Cross-plane enhanced thermoelectricity and phonon suppression in graphene/MoS2 van der Waals heterostructures

被引:46
作者
Sadeghi, Hatef [1 ]
Sangtarash, Sara [1 ]
Lambert, Colin J. [1 ]
机构
[1] Univ Lancaster, Quantum Technol Ctr, Phys Dept, Lancaster LA1 4YB, England
来源
2D MATERIALS | 2017年 / 4卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
molybdenum disulphide; thermoelectricity; thermal conductance; graphene; THERMAL-CONDUCTIVITY; TRANSPORT-PROPERTIES; MOS2; CONDUCTANCE; EFFICIENCY; SILICENE; CHANNEL;
D O I
10.1088/2053-1583/4/1/015012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The thermoelectric figures of merit of pristine two-dimensional materials are predicted to be significantly less than unity, making them uncompetitive as thermoelectric materials. Here we elucidate a new strategy that overcomes this limitation by creating multi-layer nanoribbons of two different materials and allowing thermal and electrical currents to flow perpendicular to their planes. To demonstrate this enhancement of thermoelectric efficiency ZT, we analyse the thermoelectric performance of monolayer molybdenum disulphide (MoS2) sandwiched between two graphene monolayers and demonstrate that the cross-plane (CP) ZT is significantly enhanced compared with the pristine parent materials. For the parent monolayer of MoS2, we find that ZT can be as high as approximately 0.3, whereas monolayer graphene has a negligibly small ZT. In contrast for the graphene/MoS2/graphene heterostructure, we find that the CP ZT can be as large as 2.8. One contribution to this enhancement is a reduction of the thermal conductance of the van der Waals heterostructure compared with the parent materials, caused by a combination of boundary scattering at the MoS2/graphene interface which suppresses the phonons transmission and the lower Debye frequency of monolayer MoS2, which filters phonons from the monolayer graphene. A second contribution is an increase in the electrical conductance and Seebeck coefficient associated with molybdenum atoms at the edges of the nanoribbons.
引用
收藏
页数:8
相关论文
共 45 条
  • [1] Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
  • [2] Nonvolatile Memory Cells Based on MoS2/Graphene Heterostructures
    Bertolazzi, Simone
    Krasnozhon, Daria
    Kis, Andras
    [J]. ACS NANO, 2013, 7 (04) : 3246 - 3252
  • [3] Cui X, 2015, NAT NANOTECHNOL, V10, P534, DOI [10.1038/nnano.2015.70, 10.1038/NNANO.2015.70]
  • [4] Interfacial thermal conductance in graphene/MoS2 heterostructures
    Ding, Zhiwei
    Pei, Qing-Xiang
    Jiang, Jin-Wu
    Huang, Wenxuan
    Zhang, Yong-Wei
    [J]. CARBON, 2016, 96 : 888 - 896
  • [5] Stacking order dependent mechanical properties of graphene/MoS2 bilayer and trilayer heterostructures
    Elder, Robert M.
    Neupane, Mahesh R.
    Chantawansri, Tanya L.
    [J]. APPLIED PHYSICS LETTERS, 2015, 107 (07)
  • [6] GOLLUM: a next-generation simulation tool for electron, thermal and spin transport
    Ferrer, J.
    Lambert, C. J.
    Garcia-Suarez, V. M.
    Manrique, D. Zs
    Visontai, D.
    Oroszlany, L.
    Rodriguez-Ferradas, R.
    Grace, I.
    Bailey, S. W. D.
    Gillemot, K.
    Sadeghi, Hatef
    Algharagholy, L. A.
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [7] Fiori G, 2014, NAT NANOTECHNOL, V9, P768, DOI [10.1038/nnano.2014.207, 10.1038/NNANO.2014.207]
  • [8] Lattice Mismatch Dominant Yet Mechanically Tunable Thermal Conductivity in Bilayer Heterostructures
    Gao, Yuan
    Liu, Qingchang
    Xu, Baoxing
    [J]. ACS NANO, 2016, 10 (05) : 5431 - 5439
  • [9] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [10] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    [J]. NATURE, 2013, 499 (7459) : 419 - 425