A review on recent advances in the electrochemical reduction of CO2 to CO with nano-electrocatalysts

被引:40
作者
Poon, Kee Chun [1 ]
Wan, Wei Yang [1 ]
Su, Haibin [2 ]
Sato, Hirotaka [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Hong Kong Univ Sci & Technol, Dept Chem, Clear Water Bay, Hong Kong, Peoples R China
关键词
CARBON-DIOXIDE; ENERGY-STORAGE; CATALYTIC-ACTIVITY; ELECTROREDUCTION; METAL; AU; TECHNOLOGIES; CONVERSION; NITROGEN; SCALE;
D O I
10.1039/d2ra03341k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical reduction (ECR) of CO2 is a powerful strategy to reduce the world's carbon footprint by converting CO2 to useful products such as CH3OH and CO. Recent techno-economic analysis has found that for the electro-conversion of CO2 to be adapted for practical use, the main products formed from this reaction need to be low-order, such as CO. This review summarizes recent progress in the ECR of CO2 to CO on nano-electrocatalysts (noble, non-noble metals and carbon nanomaterials) and provides the limitations and challenges that each electrocatalyst faces. It discusses the mechanism behind the performance of the electrocatalysts and offers the potential future prospects of the ECR process.
引用
收藏
页码:22703 / 22721
页数:19
相关论文
共 74 条
[1]   The Electrochemical Reduction of Carbon Dioxide to Formate/Formic Acid: Engineering and Economic Feasibility [J].
Agarwal, Arun S. ;
Zhai, Yumei ;
Hill, Davion ;
Sridhar, Narasi .
CHEMSUSCHEM, 2011, 4 (09) :1301-1310
[2]   Carbon Capture and Utilization Update [J].
Al-Mamoori, Ahmed ;
Krishnamurthy, Anirudh ;
Rownaghi, Ali A. ;
Rezaei, Fateme .
ENERGY TECHNOLOGY, 2017, 5 (06) :834-849
[3]   Overview of energy storage in renewable energy systems [J].
Amrouche, S. Ould ;
Rekioua, D. ;
Rekioua, T. ;
Bacha, S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (45) :20914-20927
[4]  
[Anonymous], 2019, BP statistical review of world energy, V68th
[5]   Structure- and Electrolyte-Sensitivity in CO2 Electroreduction [J].
Aran-Ais, Rosa M. ;
Gao, Dunfeng ;
Roldan Cuenya, Beatriz .
ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (11) :2906-2917
[6]   Active Sites of Au and Ag Nanoparticle Catalysts for CO2 Electroreduction to CO [J].
Back, Seoin ;
Yeom, Min Sun ;
Jung, Yousung .
ACS CATALYSIS, 2015, 5 (09) :5089-5096
[7]   Carbon capture and utilization technologies: a literature review and recent advances [J].
Baena-Moreno, Francisco M. ;
Rodriguez-Galan, Monica ;
Vega, Fernando ;
Alonso-Farinas, Bernabe ;
Vilches Arenas, Luis F. ;
Navarrete, Benito .
ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2019, 41 (12) :1403-1433
[8]   Geothermal energy technology and current status: an overview [J].
Barbier, E .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2002, 6 (1-2) :3-65
[9]  
Barros V.R., 2014, Climate Change 2014: Impacts, Adaptation, and Vulnerability
[10]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99