Machine Learning-Based Student's Native Place Identification for Real-Time

被引:47
|
作者
Verma, Chaman [1 ]
Stoffova, Veronika [2 ]
Illes, Zoltan [1 ]
Tanwar, Sudeep [3 ]
Kumar, Neeraj [4 ,5 ]
机构
[1] Eotvos Lorand Univ, Dept Media & Educ Informat, H-1053 Budapest, Hungary
[2] Trnava Univ, Dept Math & Comp Sci, Trnava 91843, Slovakia
[3] Nirma Univ, Inst Technol, Dept Comp Sci & Engn, Ahmadabad 382481, Gujarat, India
[4] Thapar Inst Engn & Technol, Dept Comp Sci & Engn CSE, Patiala 147002, Punjab, India
[5] Asia Univ, Dept Comp Sci & Informat Engn, Taichung 41354, Taiwan
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Adam; native place; PCA; optimizer; real-time prediction SGD; MOBILE TECHNOLOGY; PREDICTION;
D O I
10.1109/ACCESS.2020.3008830
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mindset reading of a student towards technology is a challenging task. The student's demographic features prediction has a significant aspect for the learning activities in educational institutions. The current studies predicted the student's native place based on technological awareness having various features such as development, availability, usability, educational benefits, etc. However,these studies have not explored the identification of sentiment identification about the technology through ML,optimization,etc.Motivated from these facts,in this paper, we propose a machine learning (ML) model with optimizing techniques to tune the hyper-parameters. In the proposed model, a primary dataset gathered from Indian and Hungarian universities, which analyzed with a Multi-Layer-Perceptron (MLP) with three popular optimization algorithms, such as Adaptive Moment Estimation (Adam), Stochastic Gradient Descent (SGD), Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS). The optimized MLP has compared with the Support Vector Machine (SVM). Besides, numerous testing methods and to select the most prominent features, Principal Component Analysis (PCA) trained both models. Association of the Adam optimizer with the ReLu activation function in the MLP proved significant play in prediction with regularization. The PCA components covering most of the variance improved the optimized MLP accuracy with 2.3% and boosted the accuracy of the SVM with 2.9%. The Gain-ratio and the Info-gain suggested 11 features with significant weights. Both predictive models are found not only competitive but also outperformed with an identical prediction accuracy of 94% to identify the native place of the student. The Statistical t-test supported the equal predictive strength of both models and proved the significant enhancement in the SVM performance using the PCA components. Further, a considerable reduction is also achieved in the prediction error and prediction time to support the institute's web-based real-time system. Based on deep experiments, we recommend the optimistic native identification models for the higher educational institutions to analyze the attitude and technical awareness among students based on their native place.
引用
收藏
页码:130840 / 130854
页数:15
相关论文
共 50 条
  • [21] Deep learning-based real-time VPN encrypted traffic identification methods
    Lulu Guo
    Qianqiong Wu
    Shengli Liu
    Ming Duan
    Huijie Li
    Jianwen Sun
    Journal of Real-Time Image Processing, 2020, 17 : 103 - 114
  • [22] Deep learning-based real-time VPN encrypted traffic identification methods
    Guo, Lulu
    Wu, Qianqiong
    Liu, Shengli
    Duan, Ming
    Li, Huijie
    Sun, Jianwen
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2020, 17 (01) : 103 - 114
  • [23] Machine Learning-Based Classification of Pulmonary Diseases through Real-Time Lung Sounds
    Balasubramanian, Sangeetha
    Rajadurai, Periyasamy
    INTERNATIONAL JOURNAL OF ENGINEERING AND TECHNOLOGY INNOVATION, 2024, 14 (01) : 85 - 102
  • [24] Machine learning-based real-time kinetic profile reconstruction in DIII-D
    Shousha, Ricardo
    Seo, Jaemin
    Erickson, Keith
    Xing, Zichuan
    Kim, Sangkyeun
    Abbate, Joseph
    Kolemen, Egemen
    NUCLEAR FUSION, 2024, 64 (02)
  • [25] A Machine Learning-based Real-time Monitoring System for Classification of Elephant Flows on KOREN
    Akbar, Waleed
    Rivera, Javier J. D.
    Ahmed, Khan T.
    Muhammad, Afaq
    Song, Wang-Cheol
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2022, 16 (08): : 2801 - 2815
  • [26] Machine Learning-Based Model for Real-Time GNSS Precipitable Water Vapor Sensing
    Zheng, Yuxin
    Lu, Cuixian
    Wu, Zhilu
    Liao, Jianchi
    Zhang, Yushan
    Wang, Qiuyi
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (03)
  • [27] Machine Learning-Based Parametric Audiovisual Quality Prediction Models for Real-Time Communications
    Demirbilek, Edip
    Gregoire, Jean-Charles
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2017, 13 (02)
  • [28] Real-Time Machine Learning-Based Driver Drowsiness Detection Using Visual Features
    Albadawi, Yaman
    AlRedhaei, Aneesa
    Takruri, Maen
    JOURNAL OF IMAGING, 2023, 9 (05)
  • [29] Machine Learning-Based Models for Real-time Traffic Flow Prediction in Vehicular Networks
    Sun, Peng
    Aljeri, Noura
    Boukerche, Auedine
    IEEE NETWORK, 2020, 34 (03): : 178 - 185
  • [30] Enhancing Email Security: A Real-Time Machine Learning-Based Spam Detection System
    Yadav, Dharmveer Kumar
    Raj, Abhishek
    Rajlakshmi, Neeraj
    Kumar, Neeraj
    Kumari, Ritu
    INTERNET TECHNOLOGY LETTERS, 2024,