On the integrability of two-dimensional models with U(1) x SU(N) symmetry

被引:22
|
作者
Basso, Benjamin [2 ]
Rej, Adam [1 ]
机构
[1] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
[2] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
关键词
EXACT MASS-GAP; NONLINEAR SIGMA-MODELS; SINE-GORDON; DIMENSIONS; CPN-1; MODEL; RENORMALIZATION; O(3);
D O I
10.1016/j.nuclphysb.2012.09.003
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper we study the integrability of a family of models with U (1) x SU(N) symmetry. They admit fermionic and bosonic formulations related through bosonization and subsequent T-duality. The fermionic theory is just the CPN-1 sigma model coupled to a self-interacting massless fermion, while the bosonic one defines a one-parameter deformation of the O(2N) sigma model. For N = 2 the latter model is equivalent to the integrable deformation of the O(4) sigma model discovered by Wiegmann. At higher values of N we find that integrability is more sporadic and requires a fine-tuning of the parameters of the theory. A special case of our study is the N = 4 model, which was found to describe the AdS(4) x CP3 string theory in the Alday-Maldacena decoupling limit. In this case we propose a set of asymptotic Bethe ansatz equations for the energy spectrum. (C) 2012 Published by Elsevier B.V.
引用
收藏
页码:337 / 377
页数:41
相关论文
共 50 条
  • [21] Three-body correlations in a two-dimensional SU(3) Fermi gas
    Kirk, Thomas
    Parish, Meera M.
    PHYSICAL REVIEW A, 2017, 96 (05)
  • [22] Two-Dimensional Crystals from Reduced Symmetry Analogues of Trimesic Acid
    Barnard, Rachel A.
    Dutta, Ananya
    Schnobrich, Jennifer K.
    Morrison, Christine N.
    Ahn, Seokhoon
    Matzger, Adam J.
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (15) : 5954 - 5961
  • [23] Generalized multifractality in two-dimensional disordered systems of chiral symmetry classes
    Karcher, Jonas F.
    Gruzberg, Ilya A.
    Mirlin, Alexander D.
    PHYSICAL REVIEW B, 2023, 107 (10)
  • [24] Broken-symmetry magnetic phases in two-dimensional triangulene crystals
    Catarina, G.
    Henriques, J. C. G.
    Molina-Sanchez, A.
    Costa, A. T.
    Fernandez-Rossier, J.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (04):
  • [25] Interface mapping in two-dimensional random lattice models
    Karsai, M.
    d'Auriac, J-Ch Angles
    Igloi, F.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [26] Two-Dimensional State Sum Models and Spin Structures
    Barrett, John W.
    Tavares, Sara O. G.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 336 (01) : 63 - 100
  • [27] Variational Quantum Dynamics of Two-Dimensional Rotor Models
    Medvidovic, Matija
    Sels, Dries
    PRX QUANTUM, 2023, 4 (04):
  • [28] Asymptotic low-temperature behavior of two-dimensional RPN-1 models
    Bonati, Claudio
    Franchi, Alessio
    Pelissetto, Andrea
    Vicari, Ettore
    PHYSICAL REVIEW D, 2020, 102 (03):
  • [29] U(1) x U(1) symmetry-protected topological order in Gutzwiller wave functions
    Liu, Zheng-Xin
    Mei, Jia-Wei
    Ye, Peng
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2014, 90 (23):
  • [30] Two-Dimensional Magnetostatic Finite-Element Simulation for Devices With a Radial Symmetry
    Vanoost, Dries
    De Gersem, Herbert
    Peuteman, Joan
    Gielen, Georges
    Pissoort, Davy
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (05)