Stochastic EM algorithm for generalized exponential cure rate model and an empirical study

被引:22
作者
Davies, Katherine [1 ]
Pal, Suvra [2 ]
Siddiqua, Joynob A. [1 ]
机构
[1] Univ Manitoba, Dept Stat, Winnipeg, MB R3T 2N2, Canada
[2] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Bernoulli cure rate model; Poisson cure rate model; competing causes; goodness-of-fit; non-homogeneous lifetime; EXPECTATION-MAXIMIZATION ALGORITHM; MELANOMA; TRANSFORMATION; LIKELIHOOD; MIXTURES;
D O I
10.1080/02664763.2020.1786676
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider two well-known parametric long-term survival models, namely, the Bernoulli cure rate model and the promotion time (or Poisson) cure rate model. Assuming the long-term survival probability to depend on a set of risk factors, the main contribution is in the development of the stochastic expectation maximization (SEM) algorithm to determine the maximum likelihood estimates of the model parameters. We carry out a detailed simulation study to demonstrate the performance of the proposed SEM algorithm. For this purpose, we assume the lifetimes due to each competing cause to follow a two-parameter generalized exponential distribution. We also compare the results obtained from the SEM algorithm with those obtained from the well-known expectation maximization (EM) algorithm. Furthermore, we investigate a simplified estimation procedure for both SEM and EM algorithms that allow the objective function to be maximized to split into simpler functions with lower dimensions with respect to model parameters. Moreover, we present examples where the EM algorithm fails to converge but the SEM algorithm still works. For illustrative purposes, we analyze a breast cancer survival data. Finally, we use a graphical method to assess the goodness-of-fit of the model with generalized exponential lifetimes.
引用
收藏
页码:2112 / 2135
页数:24
相关论文
共 35 条
[1]   An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood- and information-based methods [J].
Balakrishnan, N. ;
Pal, Suvra .
COMPUTATIONAL STATISTICS, 2015, 30 (01) :151-189
[2]   EM algorithm-based likelihood estimation for some cure rate models [J].
N. Balakrishnan ;
S. Pal .
Journal of Statistical Theory and Practice, 2012, 6 (4) :698-724
[3]   Expectation maximization-based likelihood inference for flexible cure rate models with Weibull lifetimes [J].
Balakrishnan, Narayanaswamy ;
Pal, Suvra .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (04) :1535-1563
[4]   SURVIVAL CURVE FOR CANCER PATIENTS FOLLOWING TREATMENT [J].
BERKSON, J ;
GAGE, RP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1952, 47 (259) :501-515
[5]  
BOAG JW, 1949, J ROY STAT SOC B, V11, P15
[6]   A stochastic EM algorithm for a semiparametric mixture model [J].
Bordes, Laurent ;
Chauveau, Didier ;
Vandekerkhove, Pierre .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (11) :5429-5443
[7]   The Power Series Cure Rate Model: An Application to a Cutaneous Melanoma Data [J].
Cancho, Vicente G. ;
Louzada, Francisco ;
Ortega, Edwin M. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (03) :586-602
[8]   Unsupervised texture segmentation/classification using 2-D autoregressive modeling and the stochastic expectation-maximization algorithm [J].
Cariou, Claude ;
Chehdi, Kacem .
PATTERN RECOGNITION LETTERS, 2008, 29 (07) :905-917
[9]  
Celeux G., 1985, Computational statistics quarterly, V2, P73
[10]   A STOCHASTIC EM ALGORITHM FOR MIXTURES WITH CENSORED-DATA [J].
CHAUVEAU, D .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 46 (01) :1-25