Stochastic EM algorithm for generalized exponential cure rate model and an empirical study

被引:21
|
作者
Davies, Katherine [1 ]
Pal, Suvra [2 ]
Siddiqua, Joynob A. [1 ]
机构
[1] Univ Manitoba, Dept Stat, Winnipeg, MB R3T 2N2, Canada
[2] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Bernoulli cure rate model; Poisson cure rate model; competing causes; goodness-of-fit; non-homogeneous lifetime; EXPECTATION-MAXIMIZATION ALGORITHM; MELANOMA; TRANSFORMATION; LIKELIHOOD; MIXTURES;
D O I
10.1080/02664763.2020.1786676
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider two well-known parametric long-term survival models, namely, the Bernoulli cure rate model and the promotion time (or Poisson) cure rate model. Assuming the long-term survival probability to depend on a set of risk factors, the main contribution is in the development of the stochastic expectation maximization (SEM) algorithm to determine the maximum likelihood estimates of the model parameters. We carry out a detailed simulation study to demonstrate the performance of the proposed SEM algorithm. For this purpose, we assume the lifetimes due to each competing cause to follow a two-parameter generalized exponential distribution. We also compare the results obtained from the SEM algorithm with those obtained from the well-known expectation maximization (EM) algorithm. Furthermore, we investigate a simplified estimation procedure for both SEM and EM algorithms that allow the objective function to be maximized to split into simpler functions with lower dimensions with respect to model parameters. Moreover, we present examples where the EM algorithm fails to converge but the SEM algorithm still works. For illustrative purposes, we analyze a breast cancer survival data. Finally, we use a graphical method to assess the goodness-of-fit of the model with generalized exponential lifetimes.
引用
收藏
页码:2112 / 2135
页数:24
相关论文
共 8 条
  • [1] A simplified stochastic EM algorithm for cure rate model with negative binomial competing risks: An application to breast cancer data
    Pal, Suvra
    STATISTICS IN MEDICINE, 2021, 40 (28) : 6387 - 6409
  • [2] The generalized exponential cure rate model with covariates
    Kannan, Nandini
    Kundu, Debasis
    Nair, P.
    Tripathi, R. C.
    JOURNAL OF APPLIED STATISTICS, 2010, 37 (10) : 1625 - 1636
  • [3] An EM algorithm for estimating the destructive weighted Poisson cure rate model
    Gallardo, Diego I.
    Bolfarine, Heleno
    Pedroso-de-Lima, Antonio Carlos
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (08) : 1497 - 1515
  • [4] A Stochastic Version of the EM Algorithm for Mixture Cure Model with Exponentiated Weibull Family of Lifetimes
    Pal, Suvra
    Barui, Sandip
    Davies, Katherine
    Mishra, Nutan
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2022, 16 (03)
  • [5] A Stochastic Version of the EM Algorithm for Mixture Cure Model with Exponentiated Weibull Family of Lifetimes
    Suvra Pal
    Sandip Barui
    Katherine Davies
    Nutan Mishra
    Journal of Statistical Theory and Practice, 2022, 16
  • [6] An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood- and information-based methods
    Balakrishnan, N.
    Pal, Suvra
    COMPUTATIONAL STATISTICS, 2015, 30 (01) : 151 - 189
  • [7] A stochastic EM algorithm for nonlinear state estimation with model uncertainties
    Zia, A
    Kirubarajan, T
    Reilly, JP
    Shirani, S
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2003, 2003, 5204 : 293 - 304
  • [8] Bayesian estimation of generalized Gamma mixture model based on variational EM algorithm
    Liu, Chi
    Li, Heng-Chao
    Fu, Kun
    Zhang, Fan
    Datcu, Mihai
    Emery, William J.
    PATTERN RECOGNITION, 2019, 87 : 269 - 284