Impact of real-time metabolomics in liver transplantation: Graft evaluation and donor-recipient matching

被引:53
作者
Faitot, Francois [1 ,2 ]
Besch, Camille [1 ]
Battini, Stephanie [2 ]
Ruhland, Elisa [2 ]
Onea, Mihaela [3 ]
Addeo, Pietro [1 ]
Woehl-Jaegle, Marie-Lorraine [1 ]
Ellero, Bernard [1 ]
Bachellier, Philippe [1 ]
Namer, Izzie-Jacques [2 ,4 ]
机构
[1] CHU Strasbourg, Hop Hautepierre, Hepatobiliopancreat Surg & Transplantat Dept, Strasbourg, France
[2] Univ Strasbourg, Lab ICube, UMR7357, Strasbourg, France
[3] CHU Strasbourg, Hop Hautepierre, Pathol Dept, Strasbourg, France
[4] CHU Strasbourg, Hop Hautepierre, Nucl Med Dept, Strasbourg, France
关键词
Liver transplantation; Metabolomics; Lactate; Early allograft dysfunction; SUBNORMOTHERMIC MACHINE PERFUSION; ISCHEMIA-REPERFUSION INJURY; HEPATIC STEATOSIS; RISK; PRESERVATION; ALLOGRAFTS; DYSFUNCTION; ALLOCATION; DEFINITION; GUIDELINES;
D O I
10.1016/j.jhep.2017.11.022
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background & Aims: There is an emerging need to assess the metabolic state of liver allografts especially in the novel setting of machine perfusion preservation and donor in cardiac death (DCD) grafts. High-resolution magic-angle-spinning nuclear magnetic resonance (HR-MAS-NMR) could be a useful tool in this setting as it can extemporaneously provide untargeted metabolic profiling. The purpose of this study was to evaluate the potential value of HR-MAS-NMR metabolomic analysis of back-table biopsies for the prediction of early allograft dysfunction (EAD) and donor-recipient matching. Method: The metabolic profiles of back-table biopsies obtained by HR-MAS-NMR, were compared according to the presence of EAD using partial least squares discriminant analysis. Network analysis was used to identify metabolites which changed significantly. The profiles were compared to native livers to identify metabolites for donor-recipient matching. Results: The metabolic profiles were significantly different in grafts that caused EAD compared to those that did not. The constructed model can be used to predict the graft outcome with excellent accuracy. The metabolites showing the most significant differences were lactate level >8.3 mmol/g and phosphocholine content >0.646 mmol/g, which were significantly associated with graft dysfunction with an excellent accuracy (AUROC(lactates) = 0.906; AUROC(phosphocholine) = 0.816). Native livers from patients with sarcopenia had low lactate and glycerophosphocholine content. In patients with sarcopenia, the risk of EAD was significantly higher when transplanting a graft with a high-risk graft metabolic score. Conclusion: This study underlines the cost of metabolic adaptation, identifying lactate and choline-derived metabolites as predictors of poor graft function in both native livers and liver grafts. HR-MAS-NMR seems a valid technique to evaluate graft quality and the consequences of cold ischemia on the graft. It could be used to assess the efficiency of graft resuscitation on machine perfusion in future studies. Lay summary: Real-time metabolomic profiles of human grafts during back-table can accurately predict graft dysfunction. High lactate and phosphocholine content are highly predictive of graft dysfunction whereas low lactate and phosphocholine content characterize patients with sarcopenia. In these patients, the cost of metabolic adaptation may explain the poor outcomes. (C) 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:699 / 706
页数:8
相关论文
共 41 条
[1]  
Abraham I, 1998, Stress, V2, P171
[2]   Analysis of Ischemia/Reperfusion Injury in Time-Zero Biopsies Predicts Liver Allograft Outcomes [J].
Ali, Jason M. ;
Davies, Susan E. ;
Brais, Rebecca J. ;
Randle, Lucy V. ;
Klinck, John R. ;
Allison, Michael E. D. ;
Chen, Yining ;
Pasea, Laura ;
Harper, Simon F. J. ;
Pettigrew, Gavin J. .
LIVER TRANSPLANTATION, 2015, 21 (04) :487-499
[3]   The assessment of the quality of the graft in an animal model for lung transplantation using the metabolomics 1H high-resolution magic angle spinning NMR spectroscopy [J].
Benahmed, Malika A. ;
Santelmo, Nicola ;
Elbayed, Karim ;
Frossard, Nelly ;
Noll, Eric ;
Canuet, Mathieu ;
Pottecher, Julien ;
Diemunsch, Pierre ;
Piotto, Martial ;
Massard, Gilbert ;
Namer, Izzie J. .
MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (04) :1026-1038
[4]   Subnormothermic Machine Perfusion for Ex Vivo Preservation and Recovery of the Human Liver for Transplantation [J].
Bruinsma, B. G. ;
Yeh, H. ;
Oezer, S. ;
Martins, P. N. ;
Farmer, A. ;
Wu, W. ;
Saeidi, N. ;
Op den Dries, S. ;
Berendsen, T. A. ;
Smith, R. N. ;
Markmann, J. F. ;
Porte, R. J. ;
Yarmush, M. L. ;
Uygun, K. ;
Izamis, M. -L. .
AMERICAN JOURNAL OF TRANSPLANTATION, 2014, 14 (06) :1400-1409
[5]   3-month and 12-month mortality after first liver transplant in adults in Europe: predictive models for outcome [J].
Burroughs, AK ;
Sabin, CA ;
Rolles, K ;
Delvart, V ;
Karam, V ;
Buckels, J ;
O'Grady, JG ;
Castaing, D ;
Klempnauer, J ;
Jamieson, N ;
Neuhaus, P ;
Lerut, J ;
de Goyet, JD ;
Pollard, S ;
Salizzoni, M ;
Rogiers, X ;
Muhlbacher, F ;
Valdecasas, JCG ;
Broelsch, C ;
Jaeck, D ;
Berenguer, J ;
Gonzalez, EM ;
Adam, R .
LANCET, 2006, 367 (9506) :225-232
[6]   Metabolite Profiling Identifies Pathways Associated With Metabolic Risk in Humans [J].
Cheng, Susan ;
Rhee, Eugene P. ;
Larson, Martin G. ;
Lewis, Gregory D. ;
McCabe, Elizabeth L. ;
Shen, Dongxiao ;
Palma, Melinda J. ;
Roberts, Lee D. ;
Dejam, Andre ;
Souza, Amanda L. ;
Deik, Amy A. ;
Magnusson, Martin ;
Fox, Caroline S. ;
O'Donnell, Christopher J. ;
Vasan, Ramachandran S. ;
Melander, Olle ;
Clish, Clary B. ;
Gerszten, Robert E. ;
Wang, Thomas J. .
CIRCULATION, 2012, 125 (18) :2222-U132
[7]   Donor Hepatic Steatosis and Outcome After Liver Transplantation: a Systematic Review [J].
Chu, Michael J. J. ;
Dare, Anna J. ;
Phillips, Anthony R. J. ;
Bartlett, Adam S. J. R. .
JOURNAL OF GASTROINTESTINAL SURGERY, 2015, 19 (09) :1713-1724
[8]   ADEMA: An Algorithm to Determine Expected Metabolite Level Alterations Using Mutual Information [J].
Cicek, A. Ercument ;
Bederman, Ilya ;
Henderson, Leigh ;
Drumm, Mitchell L. ;
Ozsoyoglu, Gultekin .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (01)
[9]   Metabolomics discloses donor liver biomarkers associated with early allograft dysfunction [J].
Cortes, Miriam ;
Pareja, Eugenia ;
Garcia-Canaveras, Juan C. ;
Donato, M. Teresa ;
Montero, Sandra ;
Mir, Jose ;
Castell, Jose V. ;
Lahoz, Agustin .
JOURNAL OF HEPATOLOGY, 2014, 61 (03) :564-574
[10]   Gene expression profiling of human liver transplants identifies an early transcriptional signature associated with initial poor graft function [J].
Defamie, V. ;
Cursio, R. ;
Le Brigand, K. ;
Moreilhon, C. ;
Saint-Paul, M. -C. ;
Laurens, M. ;
Crenesse, D. ;
Cardinaud, B. ;
Auberger, P. ;
Gugenheim, J. ;
Barbry, P. ;
Mari, B. .
AMERICAN JOURNAL OF TRANSPLANTATION, 2008, 8 (06) :1221-1236