Multiple relaxation time lattice Boltzmann schemes for advection-diffusion equations with application to radar image processing

被引:10
|
作者
Michelet, Jordan [1 ,2 ]
Tekitek, Mohamed Mahdi [2 ]
Berthier, Michel [2 ]
机构
[1] Bowen Co, Ave Canada, F-91940 Les Ulis, France
[2] La Rochelle Univ, MIA Lab, BP, Ave Albert Einstein, BP 33060, F-17031 La Rochelle, France
关键词
Lattice Boltzmann schemes; Multiple relaxation time; Equivalent partial differential equation; Convection -diffusion equations; Non -constant advection velocity; Radar image processing; SEGMENTATION; MODELS;
D O I
10.1016/j.jcp.2022.111612
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Motivated by marine radar image processing, we investigate the accuracy of multiple relax-ation time lattice Boltzmann schemes designed to simulate two-dimensional convection -diffusion equations. The context of application requires to deal with non-constant ad-vection velocity. Using Taylor expansions, instead of the widely used Chapman-Enskog expansions, we show how to control the accuracy of these schemes when deriving equiv-alent partial differential equations. On the one hand, a third order analysis is conducted on a scheme involving a constant advection velocity and no source term. First, this analysis derives the stability region through the von Neumann analysis. Second, a numerical conver-gence rate of three is obtained thanks to an appropriate choice of parameters. On the other hand, non-constant advection velocity together with non-zero source term, introduce addi-tional terms at the second order. Regarding the targeted application, these extra terms are shown to be negligible and experiments on real data show that such multiple relaxation time lattice Boltzmann schemes are relevant for marine radar denoising and enhancement.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Multiple anisotropic collisions for advection-diffusion Lattice Boltzmann schemes
    Ginzburg, Irina
    ADVANCES IN WATER RESOURCES, 2013, 51 : 381 - 404
  • [2] STABILITY AND ACCURACY OF LATTICE BOLTZMANN SCHEMES FOR ANISOTROPIC ADVECTION-DIFFUSION EQUATIONS
    Suga, Shinsuke
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2009, 20 (04): : 633 - 650
  • [3] Multiple-Relaxation-Time Lattice Boltzmann scheme for fractional advection-diffusion equation
    Cartalade, Alain
    Younsi, Amina
    Neel, Marie-Christine
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 234 : 40 - 54
  • [4] The role of the kinetic parameter in the stability of two-relaxation-time advection-diffusion lattice Boltzmann schemes
    Kuzmin, A.
    Ginzburg, I.
    Mohamad, A. A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (12) : 3417 - 3442
  • [5] Stability limits of the single relaxation-time advection-diffusion lattice Boltzmann scheme
    Hosseini, Seyed Ali
    Darabiha, Nasser
    Thevenin, Dominique
    Eshghinejadfard, Amir
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2017, 28 (12):
  • [6] General propagation lattice Boltzmann model for nonlinear advection-diffusion equations
    Guo, Xiuya
    Shi, Baochang
    Chai, Zhenhua
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [7] The lattice Boltzmann advection-diffusion model revisited
    Chopard, B.
    Falcone, J. L.
    Latt, J.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 171 : 245 - 249
  • [8] The lattice Boltzmann advection-diffusion model revisited
    B. Chopard
    J. L. Falcone
    J. Latt
    The European Physical Journal Special Topics, 2009, 171 : 245 - 249
  • [9] Numerical schemes obtained from lattice Boltzmann equations for advection diffusion equations
    Suga, Shinsuke
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (11): : 1563 - 1577
  • [10] Lattice Boltzmann modeling with discontinuous collision components: Hydrodynamic and advection-diffusion equations
    Ginzburg, Irina
    JOURNAL OF STATISTICAL PHYSICS, 2007, 126 (01) : 157 - 206