STRING NUMBERS OF ABELIAN GROUPS

被引:4
作者
Giordano Bruno, Anna [1 ]
Virili, Simone [2 ]
机构
[1] Univ Udine, Dipartimento Matemat & Informat, Via Sci 206, I-33100 Udine, Italy
[2] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Barcelona, Spain
关键词
Abelian group; Hopfian group; hereditarily Hopfian group; string numbers; endomorphisms; ALGEBRAIC ENTROPY;
D O I
10.1142/S0219498812501617
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The string number of self-maps arose in the context of algebraic entropy and it can be viewed as a kind of combinatorial entropy function. Later on, its values for endomorphisms of abelian groups were calculated in full generality. We study its global version for abelian groups, providing several examples involving also Hopfian abelian groups. Moreover, we characterize the class of all abelian groups with string number zero in many cases and discuss its stability properties.
引用
收藏
页数:30
相关论文
共 50 条
[11]   Hopfian Algebraically Compact Abelian Groups [J].
Kaigorodov, E. V. .
ALGEBRA AND LOGIC, 2014, 52 (06) :442-447
[12]   Hopfian Algebraically Compact Abelian Groups [J].
E. V. Kaigorodov .
Algebra and Logic, 2014, 52 :442-447
[13]   ON TWO CLASSES OF HOPFIAN ABELIAN GROUPS [J].
Kaigorodov, E., V .
VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2013, (22) :22-32
[14]   Minimal Abelian groups that are not automorphism groups [J].
Ban, GN ;
Yu, SX .
ARCHIV DER MATHEMATIK, 1998, 70 (06) :427-434
[15]   Sequences of Endomorphism Groups of Abelian Groups [J].
E. A. Timoshenko ;
A. V. Tsarev .
Mathematical Notes, 2018, 104 :309-315
[16]   Sequences of Endomorphism Groups of Abelian Groups [J].
Timoshenko, E. A. ;
Tsarev, A. V. .
MATHEMATICAL NOTES, 2018, 104 (1-2) :309-315
[17]   On the classification of abelian groups [J].
Paul Hill .
Periodica Mathematica Hungarica, 2014, 69 :41-52
[18]   On pureness in Abelian groups [J].
Turmanov M.A. .
Journal of Mathematical Sciences, 2006, 137 (6) :5336-5345
[19]   On homogeneous abelian groups [J].
B. S. Kalenova ;
N. G. Khisamiev .
Siberian Mathematical Journal, 1997, 38 :950-956
[20]   Minimal Abelian groups that are not automorphism groups [J].
Guining Ban ;
Shuxia Yu .
Archiv der Mathematik, 1998, 70 :427-434