Adaptive pruning threshold based convolutional neural network for object detection

被引:0
|
作者
Guo, Zhendong [1 ]
Li, Xiaohong [1 ]
Zhang, Kai [1 ]
Guo, Xiaoyong [1 ]
机构
[1] Tianjin Univ Sci & Technol, Coll Elect Informat & Automat, 1038 Dagu Nanlu, Tianjin 300457, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection; adaptive pruning threshold; channel pruning; layer pruning;
D O I
10.3233/JIFS-213002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, it is proposed that the redundancy in convolutional neural networks of object detection can be effectively removed via an adaptive pruning threshold method (APTCNN) which is associated with scaling factors in batch normalization layers. In this way, the channel pruning can be done iteratively with varying pruning threshold until the satisfactory performance is obtained. The method is also useful for identifying the unimportant convolutional layers. Therefore it can be applied for layer pruning. The experiments are conducted on three benchmark object detection datasets. APTCNN is verified for pruning the backbone network of object detectors YOLOv3 and YOLOv3-spp. It is shown that the importance of channels and layers are accurately ranked by the proposed adaptive threshold. For the channel pruning, our method reduces the size of YOLOv3 and YOLOv3-spp by 32x and 48x respectively, and accelerates 1.7x and 1.9x respectively. However, the accuracy suffers only 0.77% and 1.32% loss, respectively. As a result, the redundancy in the network architecture can be efficiently removed yielding a slimmed model that has lower computing operations, reduced size, and without compromising accuracy.
引用
收藏
页码:7821 / 7831
页数:11
相关论文
共 50 条
  • [1] A Review of Object Detection Based on Convolutional Neural Network
    Wang Zhiqiang
    Liu Jun
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 11104 - 11109
  • [2] Lightweight Object Detection Network Based on Convolutional Neural Network
    Cheng Yequn
    Yan, Wang
    Fan Yuying
    Li Baoqing
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (16)
  • [3] Summary of Object Detection Based on Convolutional Neural Network
    Wang Xuejiao
    Zhi Min
    ELEVENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2019), 2020, 11373
  • [4] COMPRESSIVE SENSING BASED CONVOLUTIONAL NEURAL NETWORK FOR OBJECT DETECTION
    Wu, Yirui
    Meng, Zhouyu
    Palaiahnakote, Shivakumara
    Lu, Tong
    MALAYSIAN JOURNAL OF COMPUTER SCIENCE, 2020, 33 (01) : 78 - 89
  • [5] Object Detection Based on Binocular Vision with Convolutional Neural Network
    Luo, Zekun
    Wu, Xia
    Zou, Qingquan
    Xiao, Xiao
    2018 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MACHINE LEARNING (SPML 2018), 2018, : 60 - 65
  • [6] Probabilistic Model of Object Detection Based on Convolutional Neural Network
    Li, Fang-Qi
    Ren, Xu-Die
    Guo, Hao-Nan
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2019, 463 : 2059 - 2066
  • [7] Channel pruning based on convolutional neural network sensitivity
    Yang, Chenbin
    Liu, Huiyi
    NEUROCOMPUTING, 2022, 507 : 97 - 106
  • [8] Convolutional Neural Network Based Automatic Object Detection on Aerial Images
    Sevo, Igor
    Avramovic, Aleksej
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (05) : 740 - 744
  • [9] Research on Optimization of Object Detection Technology Based on Convolutional Neural Network
    Yang Xue
    Huang Wanjun
    Yu Hongyang
    2020 13TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2020), 2020, : 13 - 16
  • [10] Research on Methods of Pavement Distress Detection Based on Object Detection Convolutional Neural Network
    Wang, Xingang
    Huang, Yaxin
    Shao, Yongjun
    Zhao, Chihang
    Zheng, Youfeng
    Ma, Xinyi
    Deng, Wenhao
    Zhang, Ziyi
    2024 8TH INTERNATIONAL CONFERENCE ON ROBOTICS, CONTROL AND AUTOMATION, ICRCA 2024, 2024, : 390 - 394