Bounded harmonic functions on Riemannian manifolds of nonpositive curvature

被引:1
作者
Ding, Qing [1 ,2 ]
机构
[1] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
[2] Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
GEOMETRY; DOMAINS; THEOREM; MAPS;
D O I
10.1007/s00208-011-0705-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Certain general conditions are put forth on a complete simply-connected Riemannian manifold of nonpositive curvature which guarantee that they support nontrivial bounded harmonic functions. This result includes the Cartan-Hadamard manifolds with curvature pinched between two negative constants and the bounded symmetric domains and (n a parts per thousand yen 2) as special cases.
引用
收藏
页码:803 / 826
页数:24
相关论文
共 25 条
[1]  
[Anonymous], 1994, C P LECT NOTES GEOME
[2]  
[Anonymous], 1927, Ann Sci Ec Norm Super, DOI DOI 10.24033/ASENS.781
[3]  
Anterson M. T., 1985, ANN MATH, V121, P429
[4]  
Anterson M. T, 1983, J DIFFER GEOM, V18, P701
[5]  
Cartan E., 1935, Abh. Math. Sem. Univ. Hamburg, V11, P116
[6]  
Cartan E, 1931, J MATH PURE ET APPL, V10, P1
[7]   Stability and constant boundary-value problems of harmonic maps with potential [J].
Chen, Q .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2000, 68 :145-154
[8]   The existence of bounded harmonic functions on C-H manifolds [J].
Ding, Q ;
Zhou, DT .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 53 (02) :197-207
[9]  
DING Q, 1994, CHINESE ANN MATH B, V15, P35
[10]   Coercive inequalities on metric measure spaces [J].
Hebisch, W. ;
Zegarlinski, B. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (03) :814-851