Revisiting the role of persistent neural activity during working memory

被引:307
作者
Sreenivasan, Kartik K. [1 ]
Curtis, Clayton E. [2 ,3 ]
D'Esposito, Mark [4 ,5 ]
机构
[1] New York Univ Abu Dhabi, Div Sci & Math, New York, NY 10011 USA
[2] NYU, Dept Psychol, New York, NY 10003 USA
[3] NYU, Ctr Neural Sci, New York, NY 10003 USA
[4] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Psychol, Berkeley, CA 94720 USA
基金
美国国家卫生研究院;
关键词
working memory; prefrontal cortex; top down; decoding; forward encoding; MVPA; fMRI; SHORT-TERM-MEMORY; PRIMARY VISUAL-CORTEX; PRIMATE PREFRONTAL CORTEX; INFERIOR TEMPORAL CORTEX; VOXEL PATTERN-ANALYSIS; HUMAN BRAIN ACTIVITY; INDIVIDUAL-DIFFERENCES; EXTRASTRIATE CORTEX; PARIETAL CORTEX; TASK;
D O I
10.1016/j.tics.2013.12.001
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
What are the neural mechanisms underlying working memory (WM)? One influential theory posits that neurons in the lateral prefrontal cortex (IPFC) store WM information via persistent activity. In this review, we critically evaluate recent findings that together indicate that this model of WM needs revision. We argue that sensory cortex, not the IPFC, maintains high-fidelity representations of WM content. By contrast, the IPFC simultaneously maintains representations of multiple goal-related variables that serve to bias stimulus-specific activity in sensory regions. This work highlights multiple neural mechanisms supporting WM, including temporally dynamic population coding in addition to persistent activity. These new insights focus the question on understanding how the mechanisms that underlie WM are related, interact, and are coordinated in the IPFC and sensory cortex.
引用
收藏
页码:82 / 89
页数:8
相关论文
共 96 条
[1]   Single-Trial Neural Correlates of Arm Movement Preparation [J].
Afshar, Afsheen ;
Santhanam, Gopal ;
Yu, Byron M. ;
Ryu, Stephen I. ;
Sahani, Maneesh ;
Shenoy, Krishna V. .
NEURON, 2011, 71 (03) :555-564
[2]   Shared Representations for Working Memory and Mental Imagery in Early Visual Cortex [J].
Albers, Anke Marit ;
Kok, Peter ;
Toni, Ivan ;
Dijkerman, H. Chris ;
de Lange, Floris P. .
CURRENT BIOLOGY, 2013, 23 (15) :1427-1431
[3]  
[Anonymous], 2000, Pattern Classification
[4]   The statistical neuroanatomy of frontal networks in the macaque [J].
Averbeck, Bruno B. ;
Seo, Moonsang .
PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (04)
[5]   Neuronal Population Coding of Parametric Working Memory [J].
Barak, Omri ;
Tsodyks, Misha ;
Romo, Ranulfo .
JOURNAL OF NEUROSCIENCE, 2010, 30 (28) :9424-9430
[6]   Large-scale brain networks in cognition: emerging methods and principles [J].
Bressler, Steven L. ;
Menon, Vinod .
TRENDS IN COGNITIVE SCIENCES, 2010, 14 (06) :277-290
[7]   Decoding and Reconstructing Color from Responses in Human Visual Cortex [J].
Brouwer, Gijs Joost ;
Heeger, David J. .
JOURNAL OF NEUROSCIENCE, 2009, 29 (44) :13992-14003
[8]   State-dependent computations: spatiotemporal processing in cortical networks [J].
Buonomano, Dean V. ;
Maass, Wolfgang .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (02) :113-125
[9]   Neural Mechanisms of Interference Control Underlie the Relationship Between Fluid Intelligence and Working Memory Span [J].
Burgess, Gregory C. ;
Gray, Jeremy R. ;
Conway, Andrew R. A. ;
Braver, Todd S. .
JOURNAL OF EXPERIMENTAL PSYCHOLOGY-GENERAL, 2011, 140 (04) :674-692
[10]   The functional role of cross-frequency coupling [J].
Canolty, Ryan T. ;
Knight, Robert T. .
TRENDS IN COGNITIVE SCIENCES, 2010, 14 (11) :506-515