Slow Many-Body Delocalization beyond One Dimension

被引:38
|
作者
Doggen, Elmer V. H. [1 ]
Gornyi, Igor, V [1 ,2 ,3 ]
Mirlin, Alexander D. [1 ,2 ,4 ,5 ]
Polyakov, Dmitry G. [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Quantum Mat & Technol, D-76021 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Throne Kondensierten Materie, D-76128 Karlsruhe, Germany
[3] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[4] RAS, LD Landau Inst Theoret Phys, Moscow 119334, Russia
[5] Petersburg Nucl Phys Inst, St Petersburg 188300, Russia
关键词
LOCALIZATION; FERMIONS; DYNAMICS;
D O I
10.1103/PhysRevLett.125.155701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the delocalization dynamics of interacting disordered hard-core bosons for quasi-1D and 2D geometries, with system sizes and timescales comparable to state-of-the-art experiments. The results are strikingly similar to the 1D case, with slow, subdiffusive dynamics featuring power-law decay. From the freezing of this decay we infer the critical disorder W-c(L, d) as a function of length L and width d. In the quasi-1D case W-c has a finite large-L limit at fixed d, which increases strongly with d. In the 2D case W-c(L, L) grows with L. The results are consistent with the avalanche picture of the many-body localization transition.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Slow delocalization of particles in many-body localized phases
    Kiefer-Emmanouilidis, Maximilian
    Unanyan, Razmik
    Fleischhauer, Michael
    Sirker, Jesko
    PHYSICAL REVIEW B, 2021, 103 (02)
  • [2] LOCAL MANY-BODY EFFECTS IN ONE DIMENSION
    GUINEA, F
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (22): : 4405 - 4413
  • [3] Many-body theory of magnetoelasticity in one dimension
    Tsyplyatyev, O.
    Kopietz, P.
    Tsui, Y.
    Wolf, B.
    Cong, P. T.
    van Well, N.
    Ritter, F.
    Krellner, C.
    Assmus, W.
    Lang, M.
    PHYSICAL REVIEW B, 2017, 95 (04)
  • [4] QUANTUM MANY-BODY PROBLEM IN ONE DIMENSION - THERMODYNAMICS
    SUTHERLAND, B
    JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (02) : 251 - +
  • [5] MANY-BODY FUNCTIONS OF NONPRIMITIVE ELECTROLYTES IN ONE DIMENSION
    VERICAT, F
    BLUM, L
    JOURNAL OF STATISTICAL PHYSICS, 1990, 61 (5-6) : 1161 - 1185
  • [6] GENERALIZED INTEGRABLE MANY-BODY SYSTEMS IN ONE DIMENSION
    WOJCIECHOWSKI, S
    PHYSICA SCRIPTA, 1986, 34 (04): : 304 - 308
  • [7] An exactly solvable many-body problem in one dimension
    Khare, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (19-20): : 2101 - 2108
  • [8] SCATTERING FROM MANY-BODY SYSTEMS IN ONE DIMENSION
    WERBY, MF
    TOBOCMAN, W
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (04): : 668 - 668
  • [9] Relaxation of classical many-body Hamiltonians in one dimension
    Lepri, S
    PHYSICAL REVIEW E, 1998, 58 (06): : 7165 - 7171
  • [10] Internal clock of many-body delocalization
    Evers, Ferdinand
    Modak, Ishita
    Bera, Soumya
    PHYSICAL REVIEW B, 2023, 108 (13)