On the "equivalence" of the Maxwell and Dirac equations

被引:15
|
作者
Gsponer, A [1 ]
机构
[1] Independent Sci Res Inst, CH-1211 Geneva 12, Switzerland
关键词
Maxwell equation; Dirac equation; Lanczos equation; fermion; boson;
D O I
10.1023/A:1015232427515
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that Maxwell's equation cannot be put into a spinor form that is equivalent to Dirac's equation. First of all, the spinor psi in the representation (F) over right arrow = psi(u) over right arrow(psi) over bar of the electromagnetic field bivector depends on only three independent complex components whereas the Dirac spinor depends on four. Second, Dirac's equation implies a complex structure specific to spin 1/2 particles that has no counterpart in Maxwell's equation. This complex structure makes fermions essentially different from bosons and therefore insures that there is no physically meaningful way to transform Maxwell's and Dirac's equations into each other.
引用
收藏
页码:689 / 694
页数:6
相关论文
共 50 条
  • [1] On the “Equivalence” of the Maxwell and Dirac Equations
    André Gsponer
    International Journal of Theoretical Physics, 2002, 41 : 689 - 694
  • [2] EQUIVALENCE OF DIRAC AND MAXWELL EQUATIONS AND QUANTUM-MECHANICS
    VAZ, J
    RODRIGUES, WA
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1993, 32 (06) : 945 - 959
  • [3] Covariances of the Dirac and Maxwell equations
    Eduardo Bayro-Corrochano
    Pertti Lounesto
    Perttu Puska
    Advances in Applied Clifford Algebras, 2002, 12 (2) : 91 - 108
  • [4] RENORMALIZED DIRAC MAXWELL EQUATIONS
    SEN, P
    NUOVO CIMENTO, 1956, 4 (02): : 270 - 282
  • [5] INVARIANCE ALGEBRAS OF THE DIRAC AND MAXWELL EQUATIONS
    DASILVEIRA, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1980, 56 (04): : 385 - 395
  • [6] ON ADDITIONAL INVARIANCE OF DIRAC AND MAXWELL EQUATIONS
    FUSHCHICH, VI
    LETTERE AL NUOVO CIMENTO, 1974, 11 (10): : 508 - 512
  • [7] The stationary Maxwell-Dirac equations
    Radford, CJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (20): : 5663 - 5681
  • [8] The stationary Maxwell-Dirac equations
    Radford, C
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 593 - 596
  • [9] The Dirac and Maxwell's Differential Equations
    v. Wisniewski, Felix Joachim
    ZEITSCHRIFT FUR PHYSIK, 1930, 63 (9-10): : 713 - 717
  • [10] THE RELATION BETWEEN THE DIRAC AND MAXWELL EQUATIONS
    JANKOVIC, Z
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (05): : T422 - T424