Hazard-based nonparametric survivor function estimation

被引:12
|
作者
Prentice, RL
Moodie, FZ
Wu, JR
机构
[1] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA
[2] St Jude Childrens Res Hosp, Memphis, TN 38105 USA
关键词
bivariate hazard function; bivariate survivor function; censored data; nonparametric estimator; Peano series;
D O I
10.1046/j.1369-7412.2003.05182.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A representation is developed that expresses the bivariate survivor function as a function of the hazard function for truncated failure time variables. This leads to a class of nonparametric survivor function estimators that avoid negative mass. The transformation from hazard function to survivor function is weakly continuous and compact differentiable, so that such properties as strong consistency, weak convergence to a Gaussian process and boot-strap applicability for a hazard function estimator are inherited by the corresponding survivor function estimator. The set of point mass assignments for a survivor function estimator is readily obtained by using a simple matrix calculation on the set of hazard rate estimators. Special cases arise from a simple empirical hazard rate estimator, and from an empirical hazard rate estimator following the redistribution of singly censored observations within strips. The latter is shown to equal van der Laan's repaired nonparametric maximum likelihood estimator, for which a Greenwood-like variance estimator is given. Simulation studies are presented to compare the moderate sample performance of various nonparametric survivor function estimators.
引用
收藏
页码:305 / 319
页数:15
相关论文
共 50 条
  • [31] Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions
    Park, Yongseok
    Taylor, Jeremy M. G.
    Kalbfleisch, John D.
    BIOMETRIKA, 2012, 99 (02) : 327 - 343
  • [32] Nonparametric estimation in a multiplicative censoring model with symmetric noise
    Comte, F.
    Dion, C.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (04) : 768 - 801
  • [33] Nonparametric Estimation of the Average Availability
    Balakrishna, N.
    Mathew, Angel
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (08) : 1207 - 1218
  • [34] Nonparametric Estimation of the Interval Reliability
    Angel Mathew
    N. Balakrishna
    Journal of Statistical Theory and Applications, 2014, 13 (4): : 356 - 366
  • [35] Nonparametric Estimation of the Interval Reliability
    Mathew, Angel
    Balakrishna, N.
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2014, 13 (04): : 356 - 366
  • [36] A NONPARAMETRIC ESTIMATION OF THE CONDITIONAL AGEING INTENSITY FUNCTION IN CENSORED DATA: A LOCAL LINEAR APPROACH
    Khardani, Salah
    Benkhaled, Abdelkader
    MATHEMATICA SLOVACA, 2021, 71 (02) : 429 - 438
  • [37] Nonparametric conditional density estimation for censored data based on a recursive kernel
    Khardani, Salah
    Semmar, Sihem
    ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 2541 - 2556
  • [38] PIECEWISE EXPONENTIAL ESTIMATOR OF THE SURVIVOR FUNCTION
    KIM, JS
    PROSCHAN, F
    IEEE TRANSACTIONS ON RELIABILITY, 1991, 40 (02) : 134 - 139
  • [39] Hazard Rate Estimation Using Varying Kernel Function for Censored Data Type I
    Al Doori, Entsar Arebe
    Mhomod, Eqbal
    BAGHDAD SCIENCE JOURNAL, 2019, 16 (03) : 793 - 803
  • [40] Nonparametric Estimation for Multi-server Queues Based on the Number of Clients in the System
    Quinino, V. B.
    Cruz, F. R. B.
    Quinino, R. C.
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2024, 86 (01): : 494 - 529