Hazard-based nonparametric survivor function estimation

被引:12
|
作者
Prentice, RL
Moodie, FZ
Wu, JR
机构
[1] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA
[2] St Jude Childrens Res Hosp, Memphis, TN 38105 USA
关键词
bivariate hazard function; bivariate survivor function; censored data; nonparametric estimator; Peano series;
D O I
10.1046/j.1369-7412.2003.05182.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A representation is developed that expresses the bivariate survivor function as a function of the hazard function for truncated failure time variables. This leads to a class of nonparametric survivor function estimators that avoid negative mass. The transformation from hazard function to survivor function is weakly continuous and compact differentiable, so that such properties as strong consistency, weak convergence to a Gaussian process and boot-strap applicability for a hazard function estimator are inherited by the corresponding survivor function estimator. The set of point mass assignments for a survivor function estimator is readily obtained by using a simple matrix calculation on the set of hazard rate estimators. Special cases arise from a simple empirical hazard rate estimator, and from an empirical hazard rate estimator following the redistribution of singly censored observations within strips. The latter is shown to equal van der Laan's repaired nonparametric maximum likelihood estimator, for which a Greenwood-like variance estimator is given. Simulation studies are presented to compare the moderate sample performance of various nonparametric survivor function estimators.
引用
收藏
页码:305 / 319
页数:15
相关论文
共 50 条
  • [11] Reduced bias nonparametric lifetime density and hazard estimation
    Berg, Arthur
    Politis, Dimitris
    Suaray, Kagba
    Zeng, Hui
    TEST, 2020, 29 (03) : 704 - 727
  • [12] Constrained nonparametric maximum likelihood estimation of stochastically ordered survivor functions
    Park, Yongseok
    Kalbfleisch, John D.
    Taylor, Jeremy M. G.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2012, 40 (01): : 22 - 39
  • [13] Nonparametric estimation of the conditional survival function with double smoothing
    Pelaez, Rebeca
    Cao, Ricardo
    Vilar, Juan M.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2022, 34 (04) : 1063 - 1090
  • [14] Smoothed bootstrap bandwidth selection for nonparametric hazard rate estimation
    Barbeito, Ines
    Cao, Ricardo
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (01) : 15 - 37
  • [15] Bootstrap selection of the smoothing parameter in nonparametric hazard bate estimation
    GonzalezManteiga, W
    Cao, R
    Marron, JS
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (435) : 1130 - 1140
  • [16] Amoud Class for Hazard-Based and Odds-Based Regression Models: Application to Oncology Studies
    Muse, Abdisalam Hassan
    Mwalili, Samuel
    Ngesa, Oscar
    Chesneau, Christophe
    Alshanbari, Huda M.
    El-Bagoury, Abdal-Aziz H.
    AXIOMS, 2022, 11 (11)
  • [17] COMPARISON OF THE CUMULATIVE-HAZARD AND KAPLAN-MEIER ESTIMATORS OF THE SURVIVOR FUNCTION
    BOHORIS, GA
    IEEE TRANSACTIONS ON RELIABILITY, 1994, 43 (02) : 230 - 232
  • [18] NONPARAMETRIC-ESTIMATION OF THE PERCENTILE RESIDUAL LIFE FUNCTION
    FENG, Z
    KULASEKERA, KB
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1991, 20 (01) : 87 - 105
  • [19] Fully nonparametric estimation of the marginal survival function based on case-control clustered data
    Zucker, David M.
    Gorfine, Malka
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 5415 - 5453
  • [20] On the superposition of overlapping Poisson processes and nonparametric estimation of their intensity function
    Gilardoni, Gustavo L.
    Colosimo, Enrico A.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (09) : 3075 - 3083