Nonlinear model predictive control from data: a set membership approach

被引:48
作者
Canale, M. [1 ]
Fagiano, L. [1 ,2 ]
Signorile, M. C. [1 ]
机构
[1] Politecn Torino, Dipartimento Automat & Informat, I-10129 Turin, Italy
[2] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
关键词
predictive control; robust stability; nonlinear control; STABILITY; SYSTEMS;
D O I
10.1002/rnc.2878
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new approach to design a Nonlinear Model Predictive Control law that employs an approximate model, derived directly from data, is introduced. The main advantage of using such models lies in the possibility to obtain a finite computable bound on the worst-case model error. Such a bound can be exploited to analyze the robust convergence of the system trajectories to a neighborhood of the origin. The effectiveness of the proposed approach, named Set Membership Predictive Control, is shown in a vehicle lateral stability control problem, through numerical simulations of harsh maneuvers. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:123 / 139
页数:17
相关论文
共 28 条
[1]  
[Anonymous], 1971, Linear Optimal Control by Brian DO Anderson
[2]   Every continuous nonlinear control system can be obtained by parametric convex programming [J].
Baes, Michel ;
Diehl, Moritz ;
Necoara, Ion .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (08) :1963-1967
[3]  
Bakker E, 1989, 890087 SAE
[4]   Robust vehicle yaw control using an active differential and IMC techniques [J].
Canale, M. ;
Fagiano, L. ;
Milanese, M. ;
Borodani, P. .
CONTROL ENGINEERING PRACTICE, 2007, 15 (08) :923-941
[5]   Robust design of predictive controllers in presence of unmodeled dynamics [J].
Canale, M ;
Milanese, M .
EUROPEAN JOURNAL OF CONTROL, 2003, 9 (05) :499-506
[6]   Set Membership approximation theory for fast implementation of Model Predictive Control laws [J].
Canale, M. ;
Fagiano, L. ;
Milanese, M. .
AUTOMATICA, 2009, 45 (01) :45-54
[7]   Systems with persistent disturbances: predictive control with restricted constraints [J].
Chisci, L ;
Rossiter, JA ;
Zappa, G .
AUTOMATICA, 2001, 37 (07) :1019-1028
[8]   Set membership approximation of discontinuous nonlinear model predictive control laws [J].
Fagiano, Lorenzo ;
Canale, Massimo ;
Milanese, Mario .
AUTOMATICA, 2012, 48 (01) :191-197
[9]  
Freeman R., 2008, Robust Nonlinear Control Design: State-space and Lyapunov Techniques
[10]   ROBUST STABILITY ANALYSIS OF CONSTRAINED L(1)-NORM MODEL-PREDICTIVE CONTROL [J].
GENCELI, H ;
NIKOLAOU, M .
AICHE JOURNAL, 1993, 39 (12) :1954-1965