We provide a new analytical approach to operator splitting for equations of the type u(t) = A(u) + uu(x) where A is a linear differential operator such that the equation is well-posed. Particular examples include the viscous Burgers equation, the Korteweg-de Vries (KdV) equation, the Benney-Lin equation, and the Kawahara equation. We show that the Strang splitting method converges with the expected rate if the initial data are sufficiently regular. In particular, for the KdV equation we obtain second-order convergence in H-r for initial data in Hr+ 5 with arbitrary r >= 1.
机构:
Eotvos Lorand Univ, Inst Math, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
Berg Univ Wuppertal, Sch Math & Nat Sci, Gaussstr 20, D-42119 Wuppertal, GermanyEotvos Lorand Univ, Inst Math, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
Batkai, Andras
Csomos, Petra
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Inst Math, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
Hungarian Acad Sci, MTA ELTE Numer Anal & Large Networks Res Grp, Pazmany Peter Setany 1-C, H-1117 Budapest, HungaryEotvos Lorand Univ, Inst Math, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
Csomos, Petra
Farkas, Balint
论文数: 0引用数: 0
h-index: 0
机构:
Berg Univ Wuppertal, Sch Math & Nat Sci, Gaussstr 20, D-42119 Wuppertal, GermanyEotvos Lorand Univ, Inst Math, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary