Synergistically advancing Li storage property of hydrothermally grown 1D pristine MnO2 over a mesh-like interconnected framework of 2D graphene oxide

被引:17
作者
Kumar, Niraj [1 ,2 ,3 ]
Rodriguez, Jassiel R. [4 ]
Pol, Vilas G. [4 ]
Sen, Arijit [2 ,3 ]
机构
[1] Kalasalingam Acad Res & Educ, Dept Elect & Commun Engn, Krishnankoil 626126, India
[2] SRM Inst Sci Technol, SRM Res Inst, Kattankulathur 603203, India
[3] SRM Inst Sci Technol, Dept Phys & Nanotechnol, Kattankulathur 603203, India
[4] Purdue Univ, Davidson Sch Chem Engn, W Lafayette, IN 47907 USA
关键词
Nanorods; Nanocomposite; Hydrothermal; Anode; Battery; LITHIUM ION BATTERIES; ONE-POT SYNTHESIS; HIGH-PERFORMANCE; ANODE MATERIALS; GENERAL-SYNTHESIS; RATE CAPABILITY; ENERGY-STORAGE; BINDER-FREE; COMPOSITE; NANORODS;
D O I
10.1007/s10008-019-04221-9
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Here, we present a unique morphology comprising a blend of ultrafine 1D MnO2 and graphene oxide as an efficient anode material to overcome the issue of continuous capacity fading upon prolong cycling as suffered by almost every electrode materials. The graphene oxide sheets and -MnO2 nanorods are likely to display Van der Walls interactions in the as-prepared nanocomposite, offering a synergistic effect with high electron conductivity and reduced Li-ion path diffusion to improve the lithiation and de-lithiation processes. Therefore, the hybrid nanocomposite exhibited higher capacity of 1160mAhg(-1) as against 938mAhg(-1) displayed by the pristine -MnO2 nanorods at 0.1 C-rate after 100cycles, with a coulombic efficiency of about 99%. A linear rise in capacity was observed predominantly after similar to 30cycles, which remained unchanged even after the introduction of graphene oxide. This promising behavior can be attributed to the unique morphologies of the samples synthesized with meticulous optimizations via a single-step hydrothermal route.
引用
收藏
页码:1443 / 1454
页数:12
相关论文
共 78 条
[51]   Reduced graphene oxide anchored with MnO2 nanorods as anode for high rate and long cycle Lithium ion batteries [J].
Ma, Zhaofei ;
Zhao, Tianbo .
ELECTROCHIMICA ACTA, 2016, 201 :165-171
[52]   A flexible electrode based on a three-dimensional graphene network-supported polyimide for lithium-ion batteries [J].
Meng, Yuena ;
Wu, Haiping ;
Zhang, Yajie ;
Wei, Zhixiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (28) :10842-10846
[53]   Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with Enhanced Photocatalytic Activity [J].
Perera, Sanjaya D. ;
Mariano, Ruperto G. ;
Khiem Vu ;
Nour, Nijem ;
Seitz, Oliver ;
Chabal, Yves ;
Balkus, Kenneth J., Jr. .
ACS CATALYSIS, 2012, 2 (06) :949-956
[54]   Sonochemical Deposition of Sn, SnO2 and Sb on Spherical Hard Carbon Electrodes for Li-Ion Batteries [J].
Pol, Vilas G. ;
Wen, Jianguo ;
Miller, Dean J. ;
Thackeray, Michael M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (05) :A777-A782
[55]   Coaxial MnO2/Carbon Nanotube Array Electrodes for High-Performance Lithium Batteries [J].
Reddy, Arava Leela Mohana ;
Shaijumon, Manikoth M. ;
Gowda, Sanketh R. ;
Ajayan, Pulickel M. .
NANO LETTERS, 2009, 9 (03) :1002-1006
[56]   Magnetic-field-assisted hydrothermal synthesis of 2 x 2 tunnels of MnO2 nanostructures with enhanced supercapacitor performance [J].
Shao, Jiajia ;
Li, Wenyao ;
Zhou, Xiying ;
Hu, Junqing .
CRYSTENGCOMM, 2014, 16 (43) :9987-9991
[57]   A facile one-pot hydrothermal synthesis of branched α-MnO2 nanorods for supercapacitor application [J].
Su, Xiaohui ;
Yang, Xianfeng ;
Yu, Lin ;
Cheng, Gao ;
Zhang, Huanhua ;
Lin, Ting ;
Zhao, Feng-Hua .
CRYSTENGCOMM, 2015, 17 (31) :5970-5977
[58]   Simple synthesis of a double-shell hollow structured MnO2@TiO2 composite as an anode material for lithium ion batteries [J].
Su, Yibo ;
Zhang, Jian ;
Liu, Kai ;
Huang, Zeya ;
Ren, Xiancang ;
Wang, Chang-An .
RSC ADVANCES, 2017, 7 (73) :46263-46270
[59]   Two-Dimensional Carbon-Coated Graphene/Metal Oxide Hybrids for Enhanced Lithium Storage [J].
Su, Yuezeng ;
Li, Shuang ;
Wu, Dongqing ;
Zhang, Fan ;
Liang, Haiwei ;
Gao, Pengfei ;
Cheng, Chong ;
Feng, Xinliang .
ACS NANO, 2012, 6 (09) :8349-8356
[60]   Tunnel-dependent supercapacitance of MnO2: effects of crystal structure [J].
Sun, Congting ;
Zhang, Yuanjian ;
Song, Shuyan ;
Xue, Dongfeng .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2013, 46 :1128-1135