Probabilistic Integration of GNSS for Safety-Critical Driving Functions and Automated Driving-the NAVENTIK Project

被引:1
|
作者
Streiter, Robin [1 ]
Hiltscher, Johannes [2 ]
Bauer, Sven [2 ]
Juettner, Michael [2 ]
机构
[1] Tech Univ Chemnitz, Reichenhainer Str 70, D-09126 Chemnitz, Germany
[2] NAVENTIK GmbH, Reichenhainer Str 70, Chemnitz, Germany
来源
ADVANCED MICROSYSTEMS FOR AUTOMOTIVE APPLICATIONS 2016: SMART SYSTEMS FOR THE AUTOMOBILE OF THE FUTURE | 2016年
关键词
GNSS; Localization; Automated driving; Safety requirements; Functional safety;
D O I
10.1007/978-3-319-44766-7_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The NAVENTIK project will develop an automotive platform for computational demanding applications in the field of sensor data fusion and software defined radio. Based on this platform, the first component launched will be an automotive-grade GNSS (Global Navigation Satellite System) receiver that integrates state-of-the-art signal processing for lane level accurate navigation and that guarantees bounded false alarm rates. This is possible, thanks to a software-defined approach and the probabilistic integration of GNSS signal tracking algorithms on radio level. The explicit modelling of GNSS error sources and local signal degradation provide the basis for the proper Bayesian integration. The project will enable the first mass-market GNSS receiver based on a software-defined approach that is able to meet safety-critical requirements as it copes with false alarm specifications and safety related requirements.
引用
收藏
页码:19 / 29
页数:11
相关论文
共 50 条
  • [31] Barrier-Enhanced Parallel Homotopic Trajectory Optimization for Safety-Critical Autonomous Driving
    Zheng, Lei
    Yang, Rui
    Wang, Michael Yu
    Ma, Jun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (02) : 2169 - 2186
  • [32] KING: Generating Safety-Critical Driving Scenarios for Robust Imitation via Kinematics Gradients
    Hanselmann, Niklas
    Renz, Katrin
    Chitta, Kashyap
    Bhattacharyya, Apratim
    Geiger, Andreas
    COMPUTER VISION, ECCV 2022, PT XXXVIII, 2022, 13698 : 335 - 352
  • [33] An Architecture Pattern for Safety Critical Automated Driving Applications: Design and Analysis
    Luo, Yaping
    Saberi, Arash Khabbaz
    Bijlsma, Tjerk
    Lukkien, Johan J.
    van den Brand, Mark
    2017 11TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON), 2017, : 261 - 267
  • [34] Confidence-driven weighted retraining for predicting safety-critical failures in autonomous driving systems
    Stocco, Andrea
    Tonella, Paolo
    JOURNAL OF SOFTWARE-EVOLUTION AND PROCESS, 2022, 34 (10)
  • [35] nn-dependability-kit: Engineering Neural Networks for Safety-Critical Autonomous Driving Systems
    Cheng, Chih-Hong
    Huang, Chung-Hao
    Nuehrenberg, Georg
    2019 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2019,
  • [36] Automatic Generation of Critical Test Cases for the Development of Highly Automated Driving Functions
    Baumann, Daniel
    Pfeffer, Raphael
    Sax, Eric
    2021 IEEE 93RD VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-SPRING), 2021,
  • [37] Real World Scenarios for the Safety Validation and Development of Highly Automated Driving Functions
    Moers T.
    Klas C.
    Zlocki A.
    Vater L.
    VDI Berichte, 2022, 2022 (2394): : 121 - 130
  • [38] "The Dresden Method": A toolbox for the holistic evaluation of active safety and automated driving functions
    Mai M.
    Bäumler M.
    Lehmann M.
    Siebke C.
    Blenz K.
    Prokop G.
    Bönninger J.
    Höpping K.
    VDI Berichte, 2022, 2022 (2387): : 419 - 434
  • [39] Modeling driver behavior in critical traffic scenarios for the safety assessment of automated driving
    Fries, Alexandra
    Lemberg, Ludwig
    Fahrenkrog, Felix
    Mai, Marcus
    Das, Arun
    TRAFFIC INJURY PREVENTION, 2023, 24 : S105 - S110
  • [40] Automatically Learning Fallback Strategies with Model-Free Reinforcement Learning in Safety-Critical Driving Scenarios
    Lecerf, Ugo U. L.
    Yemdji-Tchassi, Christelle C. Y.
    Aubert, Sebastien S. A.
    Michiardi, Pietro P. M.
    PROCEEDINGS OF 2022 7TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2022, 2022, : 209 - 215