Hertzian Contact Problem: Numerical Reduction and Volumetric Modification

被引:2
作者
Aleksandrov, E. B. [1 ]
Vil'ke, V. G. [2 ]
Kosenko, I. I. [1 ]
机构
[1] Russian State Univ Tourism & Serv, Moscow 141221, Russia
[2] Moscow MV Lomonosov State Univ, Moscow 119992, Russia
基金
俄罗斯基础研究基金会;
关键词
Hertzian contact model; existence and uniqueness theorem; volumetric contact model; ball bearing model;
D O I
10.1134/S0965542508120129
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A technique for the analytical formulation and numerical implementation of an elastic contact model for rigid bodies in the framework of the Hertzian contact problem is described. The normal elastic force and the semiaxes of the contact area are computed so that the problem is sequentially reduced to a scalar transcendental equation depending on complete elliptic integrals of the first and second kinds. Based on the classical solution to the Hertzian contact problem, an invariant volumetric force function is proposed that depends on the geometric characteristics of interpenetration of two undeformed bodies. The normal forces computed using the force function agree with results obtained previously for non-Hertzian contact of elastic bodies. As an example, a ball bearing is used to compare the contact dynamics of elastic bodies simulated in the classical Hertzian model and its volumetric modification.
引用
收藏
页码:2226 / 2240
页数:15
相关论文
共 16 条
  • [1] [Anonymous], P ECCOMAS THEM C MUL
  • [2] Galin L. A., 1980, Contact Problems in Elasticity and Viscoelasticity Theory
  • [3] Hardy G.H., 1952, Inequalities
  • [4] Hertz B. H., 1882, J REINE ANGEW MATH, V92, P156, DOI [DOI 10.1515/CRLL.1882.92.156, 10.1515/9783112342404]
  • [5] An algorithm for compliant contact between complexly shaped bodies
    Hippmann, G
    [J]. MULTIBODY SYSTEM DYNAMICS, 2004, 12 (04) : 345 - 362
  • [6] Jaeger J., 1994, Appl. Mech. Rev, V47, P35
  • [7] Johnson K.L., 1987, Contact mechanics
  • [8] Kalker JJ., 1990, 3 DIMENSIONAL ELASTI
  • [9] [Косенко И.И. Kosenko I.I.], 2006, [Математическое моделирование, Mathematical Models and Computer Simulations, Matematicheskoe modelirovanie], V18, P95
  • [10] Landau L., 1986, THEORY ELASTICITY