The elongation of spherical Au nanoparticles embedded in SiO2 under swift heavy ion (SHI) irradiation is an extensively studied phenomenon. The use of a TEM grid as a substrate facilitates the identification of the same nanoparticle before and after the irradiation. Since the underdensification of SiO2 inside the ion track plays a key role, the elongation is sensitive to the matrix material properties. Therefore, we studied the elongation process of SHI irradiated Au spherical nanoparticles of various diameters (5-80 nm) embedded either in atomic layer deposition (ALD) or plasma-enhanced chemical vapor deposition (PECVD) SiO2. The results show that a different elongation ratio is achieved depending on the particle initial size, ion fluence, and a different SiO2 deposition method. The embedded nanoparticles in ALD SiO2 elongate roughly 100% more than the nanoparticles embedded in PECVD SiO2 at the biggest applied fluence (5 x 10(14) ions/cm(2)). On the other hand, at fluences lower than 10(14) ions/cm(2), nanoparticles elongate slightly more when they are embedded in PECVD SiO2. Published under an exclusive license by AIP Publishing.