Beyond linear gyrocenter polarization in gyrokinetic theory

被引:27
作者
Brizard, Alain J. [1 ]
机构
[1] St Michaels Coll, Dept Phys, Colchester, VT 05439 USA
关键词
GUIDING-CENTER; MAXWELL-VLASOV; PLASMA; EQUATIONS;
D O I
10.1063/1.4823716
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The concept of polarization in gyrokinetic theory is clarified and generalized to include contributions from the guiding-center (zeroth-order) polarization as well as the nonlinear (second-order) gyrocenter polarization. The guiding-center polarization, which appears as the antecedent (zeroth-order) of the standard linear (first-order) gyrocenter polarization, is obtained from a modified guiding-center transformation. The nonlinear gyrocenter polarization is derived either variationally from the third-order gyrocenter Hamiltonian or directly by gyrocenter push-forward method. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 28 条
[1]   NONLINEAR GYROFLUID DESCRIPTION OF TURBULENT MAGNETIZED PLASMAS [J].
BRIZARD, A .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (05) :1213-1228
[2]   Foundations of nonlinear gyrokinetic theory [J].
Brizard, A. J. ;
Hahm, T. S. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :421-468
[3]  
Brizard Alain J., 2009, Journal of Physics: Conference Series, V169, DOI 10.1088/1742-6596/169/1/012003
[4]   Guiding-center recursive Vlasov and Lie-transform methods in plasma physics [J].
Brizard, A. J. ;
Mishchenko, A. .
JOURNAL OF PLASMA PHYSICS, 2009, 75 :675-696
[5]   On the dynamical reduction of the Vlasov equation [J].
Brizard, Alain J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (01) :24-33
[6]   Exact momentum conservation laws for the gyrokinetic Vlasov-Poisson equations [J].
Brizard, Alain J. ;
Tronko, Natalia .
PHYSICS OF PLASMAS, 2011, 18 (08)
[7]   Hamiltonian theory of guiding-center motion [J].
Cary, John R. ;
Brizard, Alain J. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :693-738
[8]   PONDEROMOTIVE EFFECTS IN COLLISIONLESS PLASMA - A LIE TRANSFORM APPROACH [J].
CARY, JR ;
KAUFMAN, AN .
PHYSICS OF FLUIDS, 1981, 24 (07) :1238-1250
[9]   GYROAVERAGED EQUATIONS FOR BOTH THE GYROKINETIC AND DRIFT-KINETIC REGIMES [J].
DIMITS, AM ;
LODESTRO, LL ;
DUBIN, DHE .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (01) :274-277
[10]   NON-LINEAR GYROKINETIC EQUATIONS [J].
DUBIN, DHE ;
KROMMES, JA ;
OBERMAN, C ;
LEE, WW .
PHYSICS OF FLUIDS, 1983, 26 (12) :3524-3535