From discrete modeling to explicit FE models for port-Hamiltonian systems of conservation laws

被引:0
作者
Kotyczka, Paul [1 ]
Thoma, Tobias [1 ]
机构
[1] Tech Univ Munich, TUM Sch Engn & Design, Chair Automat Control, Garching, Germany
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 30期
关键词
Port-Hamiltonian stems; conservation laws; exterior calculus; non-uniform boundary conditions; structure-preserving discretization; mixed finite elements; weak form; DISCRETIZATION; FORMULATION;
D O I
10.1016/j.ifacol.2022.11.088
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mixed finite element (FE) approaches have proven very useful for the structure-preserving discretization of port-Hamiltonian (PH) distributed parameter systems, but nonuniform boundary conditions (BCs) were treated in an implicit manner up to now. We apply our recent approach from structure mechanics, which relies on the weak imposition of both Neumann and Dirichlet BCs based on a suitable variational principle, to the class of PH systems of two conservation laws. We illustrate (a) starting with the integral conservation laws the transition to an exterior calculus representation suitable for FE approximation according to Farle et al. (2013). Based thereon, we show (b) the variational formulation with weakly imposed BCs of both types. We discuss (c) on a simple example on a quadrilateral mesh the structure and the variables of the resulting FE models compared to the equations derived from a direct discrete approach on dual cell complexes. We (d) provide the corresponding FEniCS code for download. Copyright (C) 2022 The Authors.
引用
收藏
页码:412 / 417
页数:6
相关论文
共 50 条
[31]   WEAK ENERGY SHAPING FOR STOCHASTIC CONTROLLED PORT-HAMILTONIAN SYSTEMS [J].
Cordoni, Francesco ;
Di Persio, Luca ;
Muradore, Riccardo .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (05) :2902-2926
[32]   Twenty years of distributed port-Hamiltonian systems: a literature review [J].
Rashad, Ramy ;
Califano, Federico ;
van der Schaft, Arjan J. ;
Stramigioli, Stefano .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2020, 37 (04) :1400-1422
[33]   Exterior and vector calculus views of incompressible Navier-Stokes port-Hamiltonian models [J].
Rashad, Ramy ;
Califano, Federico ;
Brugnoli, Andrea ;
Schuller, Frederic P. ;
Stramigioli, Stefano .
IFAC PAPERSONLINE, 2021, 54 (19) :173-179
[34]   Mixed finite elements for port-Hamiltonian models of von Karman beams [J].
Brugnoli, Andrea ;
Rashad, Ramy ;
Califano, Federico ;
Stramigioli, Stefano ;
Matignon, Denis .
IFAC PAPERSONLINE, 2021, 54 (19) :186-191
[35]   Weak form of Stokes-Dirac structures and geometric discretization of port-Hamiltonian systems [J].
Kotyczka, Paul ;
Maschke, Bernhard ;
Lefevre, Laurent .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 361 :442-476
[36]   Port-Hamiltonian modeling of non-isothermal chemical reaction networks [J].
Wang, Li ;
Maschke, Bernhard ;
van der Schaft, Arjan .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 56 (06) :1707-1727
[37]   Modeling, discretization and motion control of a flexible beam in the port-Hamiltonian framework [J].
Wang, M. ;
Bestler, A. ;
Kotyczka, P. .
IFAC PAPERSONLINE, 2017, 50 (01) :6799-6806
[38]   Structure preserving discontinuous Galerkin approximation of one-dimensional port-Hamiltonian systems [J].
Thoma, Tobias ;
Kotyczka, Paul .
IFAC PAPERSONLINE, 2023, 56 (02) :6783-6788
[39]   Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems [J].
Seslija, Marko ;
van der Schaft, Arjan ;
Scherpen, Jacquelien M. A. .
JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (06) :1509-1531
[40]   On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems [J].
Schoeberl, Markus ;
Siuka, Andreas .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (07) :1823-1828