From discrete modeling to explicit FE models for port-Hamiltonian systems of conservation laws

被引:0
|
作者
Kotyczka, Paul [1 ]
Thoma, Tobias [1 ]
机构
[1] Tech Univ Munich, TUM Sch Engn & Design, Chair Automat Control, Garching, Germany
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 30期
关键词
Port-Hamiltonian stems; conservation laws; exterior calculus; non-uniform boundary conditions; structure-preserving discretization; mixed finite elements; weak form; DISCRETIZATION; FORMULATION;
D O I
10.1016/j.ifacol.2022.11.088
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mixed finite element (FE) approaches have proven very useful for the structure-preserving discretization of port-Hamiltonian (PH) distributed parameter systems, but nonuniform boundary conditions (BCs) were treated in an implicit manner up to now. We apply our recent approach from structure mechanics, which relies on the weak imposition of both Neumann and Dirichlet BCs based on a suitable variational principle, to the class of PH systems of two conservation laws. We illustrate (a) starting with the integral conservation laws the transition to an exterior calculus representation suitable for FE approximation according to Farle et al. (2013). Based thereon, we show (b) the variational formulation with weakly imposed BCs of both types. We discuss (c) on a simple example on a quadrilateral mesh the structure and the variables of the resulting FE models compared to the equations derived from a direct discrete approach on dual cell complexes. We (d) provide the corresponding FEniCS code for download. Copyright (C) 2022 The Authors.
引用
收藏
页码:412 / 417
页数:6
相关论文
共 50 条
  • [1] Discrete port-Hamiltonian formulation and numerical approximation for systems of two conservation laws
    Kotyczka, Paul
    Maschke, Bernhard
    AT-AUTOMATISIERUNGSTECHNIK, 2017, 65 (05) : 308 - 322
  • [2] Port-Hamiltonian FE models for filaments
    Thoma, Tobias
    Kotyczka, Paul
    IFAC PAPERSONLINE, 2022, 55 (30): : 353 - 358
  • [3] Finite-dimensional observers for port-Hamiltonian systems of conservation laws
    Kotyczka, Paul
    Joos, Henning
    Wu, Yongxin
    Le Gorrec, Yann
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 6875 - 6880
  • [4] Explicit Port-Hamiltonian FEM-Models for Linear Mechanical Systems with Non-Uniform Boundary Conditions
    Thoma, Tobias
    Kotyczka, Paul
    IFAC PAPERSONLINE, 2022, 55 (20): : 499 - 504
  • [5] Port-Hamiltonian Modeling for Control
    van der Schaft, Arjan
    ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 3, 2020, 2020, 3 : 393 - 416
  • [6] Dirac Structures for a Class of Port-Hamiltonian Systems in Discrete Time
    Moreschini, Alessio
    Monaco, Salvatore
    Normand-Cyrot, Dorothee
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (03) : 1999 - 2006
  • [7] Implicit and explicit representations of continuous-time port-Hamiltonian systems
    Castanos, Fernando
    Gromov, Dmitry
    Hayward, Vincent
    Michalska, Hannah
    SYSTEMS & CONTROL LETTERS, 2013, 62 (04) : 324 - 330
  • [8] Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems
    Seslija, Marko
    Scherpen, Jacquelien M. A.
    van der Schaft, Arjan
    AUTOMATICA, 2014, 50 (02) : 369 - 377
  • [9] PORT-HAMILTONIAN SYSTEMS ON GRAPHS
    van der Schaft, A. J.
    Maschke, B. M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) : 906 - 937
  • [10] Stochastic Port-Hamiltonian Systems
    Cordoni, Francesco
    Di Persio, Luca
    Muradore, Riccardo
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)