Variations of geomagnetic cutoff rigidity in the southern hemisphere close to 70°W (South-Atlantic Anomaly and Antarctic zones) in the period 1975-2010

被引:6
作者
Cordaro, E. G. [1 ,2 ]
Venegas-Aravena, P. [1 ,3 ,4 ]
Laroze, D. [5 ,6 ]
机构
[1] Univ Chile, Observ Radiac Cosm, Casilla 487-3, Santiago, Chile
[2] Univ Autonoma Chile, Fac Ingn, Pedro de Valdivia 425, Santiago, Chile
[3] Univ Chile, Dept Geofis, Blanco Encalada 2002, Santiago, Chile
[4] Pontificia Univ Catolica Chile, Sch Engn, Dept Struct & Geotech Engn, Vicuna Mackenna 4860, Santiago, Chile
[5] Univ Tarapaca, CEDENNA, Inst Alta Invest, Casilla 7D, Arica, Chile
[6] Univ Navarra, Dept Fis & Matemat Aplicada, E-31080 Pamplona, Spain
关键词
Geomagnetic field; Geomagnetic cutoff rigidity; South Atlantic magnetic anomaly; Latitudinal variation rate of geomagnetic cutoff rigidity; Altiplano to Antarctica; DAWN-DUSK ASYMMETRY; NEUTRON MONITOR; FIELD; MAGNETOSPHERE; INTENSITY; MODEL; EARTH;
D O I
10.1016/j.asr.2018.12.019
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We report the existence of rapid variations in (effective) geomagnetic cutoff rigidity (Rc) between the equatorial and Antarctic zones adjacent to the Andes Mountains, revealed by the variation rate of geomagnetic cutoff rigidity (VRc) in the period 1975-2010. Our analysis is based on empirical records and theoretical models of the variations in cosmic rays and on the structure of geomagnetic fields. These have given us a different view of variations in Rc in time and space along the 70 degrees W meridian, where secular variations in the geomagnetic field are strongly influenced by the proximity of the South Atlantic Magnetic Anomaly (SAMA), one of the most important characteristics of the terrestrial magnetic field that affects our planet, close from the equator to the 50 degrees S parallel and from South America to South Africa. The VRc presents rapid changes in mid-latitudes where SAMA exerts its influence despite the existence of smooth changes in the geomagnetic field. This shows that these changes occur mainly in the spatial configuration, rather than in the temporal evolution of Rc. The analysis was performed using measurements from the Chilean Network of Cosmic Rays and Geomagnetism Observatories, equipped with BF-3 and latest generation He-3 neutron monitors, Fluxgate magnetometers, geomagnetic reference field (IGRF) and Tsyganenko 2001 model (just for completeness). (C) 2018 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2290 / 2299
页数:10
相关论文
共 51 条
  • [21] Influence of the terrestrial magnetic field geometry on the cutoff rigidity of cosmic ray particles
    Herbst, K.
    Kopp, A.
    Heber, B.
    [J]. ANNALES GEOPHYSICAE, 2013, 31 (10) : 1637 - 1643
  • [22] Kassovicova J., 1998, COMPUTATIONS COSMIC, P1
  • [23] Knollt G.F., 2000, RAD DETECTION MEASUR
  • [24] Kudela K., 2001, P ICRC 2001 AUG 7 15, P4103
  • [25] Magnetic monitoring of Earth and space
    Love, Jeffrey. J.
    [J]. PHYSICS TODAY, 2008, 61 (02) : 31 - 37
  • [26] Massetti S., 1998, C P SIF, V62
  • [27] McFee C., 1999, 003 EISCCD EUV
  • [28] The South Atlantic Anomaly: The Key for a Possible Geomagnetic Reversal
    Pavon-Carrasco, F. Javier
    De Santis, Angelo
    [J]. FRONTIERS IN EARTH SCIENCE, 2016, 4 : 1 - 9
  • [29] Pomerantz MA, 1971, COSMIC RAYS
  • [30] THEMIS Ground-Based Magnetometers
    Russell, C. T.
    Chi, P. J.
    Dearborn, D. J.
    Ge, Y. S.
    Kuo-Tiong, B.
    Means, J. D.
    Pierce, D. R.
    Rowe, K. M.
    Snare, R. C.
    [J]. SPACE SCIENCE REVIEWS, 2008, 141 (1-4) : 389 - 412