Hyperbolic Deformation on Quantum Lattice Hamiltonians

被引:24
作者
Ueda, Hiroshi [1 ]
Nishino, Tomotoshi [2 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Dept Mat Engn Sci, Osaka 5608531, Japan
[2] Kobe Univ, Grad Sch Sci, Dept Phys, Kobe, Hyogo 6578501, Japan
关键词
DMRG; corner Hamiltonian; regularization; renormalization group; MATRIX RENORMALIZATION-GROUP; ISING-MODEL; HYPERLATTICES; SYSTEMS;
D O I
10.1143/JPSJ.78.014001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A group of non-uniform quantum lattice Hamiltonians in one dimension is introduced, which is related to the hyperbolic (1 + 1)-dimensional space. The Hamiltonians contain only nearest neighbor interactions whose strength is proportional to cosh j lambda. where j is the lattice index and where lambda >= 0 is a deformation parameter. In the limit lambda -> 0 the Hamiltonians become uniform. Spacial translation of the deformed Hamiltonians is induced by the corner Hamiltonians. As a simple example, we investigate the ground state of the deformed S = 1/2 Heisenberg spin chain by use of the density matrix renormalization group (DMRG) method. It is shown that the ground state is dimerized when lambda is finite. Spin correlation function show exponential decay, and the boundary effect decreases with increasing lambda.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Strain fields and critical phenomena in manganites II: spin-lattice-energy Hamiltonians
    Singh, Rohit
    Puri, Sanjay
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (03):
  • [42] Entanglement in many-body eigenstates of quantum-chaotic quadratic Hamiltonians
    Lydzba, Patrycja
    Rigol, Marcos
    Vidmar, Lev
    [J]. PHYSICAL REVIEW B, 2021, 103 (10)
  • [43] Constructing quantum many-body scar Hamiltonians from Floquet automata
    Rozon, Pierre-Gabriel
    Gullans, Michael J.
    Agarwal, Kartiek
    [J]. PHYSICAL REVIEW B, 2022, 106 (18)
  • [44] Topological Characterization of Fractional Quantum Hall Ground States from Microscopic Hamiltonians
    Zaletel, Michael P.
    Mong, Roger S. K.
    Pollmann, Frank
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (23)
  • [45] Quantum Simulation of Time-Dependent Hamiltonians and the Convenient Illusion of Hilbert Space
    Poulin, David
    Qarry, Angie
    Somma, Rolando
    Verstraete, Frank
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (17)
  • [46] Quantum codes for quantum simulation of fermions on a square lattice of qubits
    Steudtner, Mark
    Wehner, Stephanie
    [J]. PHYSICAL REVIEW A, 2019, 99 (02)
  • [47] Lattice quantum gravity and asymptotic safety
    Laiho, J.
    Bassler, S.
    Coumbe, D.
    Du, D.
    Neelakanta, J. T.
    [J]. PHYSICAL REVIEW D, 2017, 96 (06)
  • [48] Quantum Coulomb glass on the Bethe lattice
    Lovas, Izabella
    Kiss, Annamaria
    Moca, Catalin Pascu
    Zarand, Gergely
    [J]. PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [49] Quantum lattice model solver HΦ
    Kawamura, Mitsuaki
    Yoshimi, Kazuyoshi
    Misawa, Takahiro
    Yamaji, Youhei
    Todo, Synge
    Kawashima, Naoki
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2017, 217 : 180 - 192
  • [50] Spectral monodromy of small non-selfadjoint quantum perturbations of completely integrable Hamiltonians
    Quang Sang Phan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) : 795 - 811