Hyperbolic Deformation on Quantum Lattice Hamiltonians

被引:24
作者
Ueda, Hiroshi [1 ]
Nishino, Tomotoshi [2 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Dept Mat Engn Sci, Osaka 5608531, Japan
[2] Kobe Univ, Grad Sch Sci, Dept Phys, Kobe, Hyogo 6578501, Japan
关键词
DMRG; corner Hamiltonian; regularization; renormalization group; MATRIX RENORMALIZATION-GROUP; ISING-MODEL; HYPERLATTICES; SYSTEMS;
D O I
10.1143/JPSJ.78.014001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A group of non-uniform quantum lattice Hamiltonians in one dimension is introduced, which is related to the hyperbolic (1 + 1)-dimensional space. The Hamiltonians contain only nearest neighbor interactions whose strength is proportional to cosh j lambda. where j is the lattice index and where lambda >= 0 is a deformation parameter. In the limit lambda -> 0 the Hamiltonians become uniform. Spacial translation of the deformed Hamiltonians is induced by the corner Hamiltonians. As a simple example, we investigate the ground state of the deformed S = 1/2 Heisenberg spin chain by use of the density matrix renormalization group (DMRG) method. It is shown that the ground state is dimerized when lambda is finite. Spin correlation function show exponential decay, and the boundary effect decreases with increasing lambda.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Quantum phases of the frustrated XY models on the honeycomb lattice
    Zhu, Zhenyue
    White, Steven R.
    MODERN PHYSICS LETTERS B, 2014, 28 (31):
  • [32] Solvable Markovian dynamics of lattice quantum spin models
    Mesterhazy, D.
    Hebenstreit, F.
    PHYSICAL REVIEW A, 2017, 96 (01)
  • [33] Lattice gauge theory simulations in the quantum information era
    Dalmonte, M.
    Montangero, S.
    CONTEMPORARY PHYSICS, 2016, 57 (03) : 388 - 412
  • [34] Scaling Relation for Excitation Energy under Hyperbolic Deformation
    Ueda, Hiroshi
    Nakano, Hiroki
    Kusakabe, Koichi
    Nishino, Tomotoshi
    PROGRESS OF THEORETICAL PHYSICS, 2010, 124 (03): : 389 - 398
  • [35] Spherical Deformation for One-Dimensional Quantum Systems
    Gendiar, Andrej
    Krcmar, Roman
    Nishino, Tomotoshi
    PROGRESS OF THEORETICAL PHYSICS, 2009, 122 (04): : 953 - 967
  • [36] Hyperbolic Deformation Applied to S=1 Spin Chains -Scaling Relation in Excitation Energy-
    Ueda, Hiroshi
    Nakano, Hiroki
    Kusakabe, Koichi
    Nishino, Tomotoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2011, 80 (09)
  • [37] Leveraging Small-Scale Quantum Computers with Unitarily Downfolded Hamiltonians
    Huang, Renke
    Li, Chenyang
    Evangelista, Francesco A.
    PRX QUANTUM, 2023, 4 (02):
  • [38] Time scaling and quantum speed limit in non-Hermitian Hamiltonians
    Impens, F.
    D'Angelis, F. M.
    Pinheiro, F. A.
    Guery-Odelin, D.
    PHYSICAL REVIEW A, 2021, 104 (05)
  • [39] Tensor Networks for Lattice Gauge Theories and Atomic Quantum Simulation
    Rico, E.
    Pichler, T.
    Dalmonte, M.
    Zoller, P.
    Montangero, S.
    PHYSICAL REVIEW LETTERS, 2014, 112 (20)
  • [40] Lattice quantum electrodynamics for graphene
    Giuliani, A.
    Mastropietro, V.
    Porta, M.
    ANNALS OF PHYSICS, 2012, 327 (02) : 461 - 511