Micro-Nanostructures of Cellulose-Collagen for Critical Sized Bone Defect Healing

被引:18
作者
Aravamudhan, Aja [1 ]
Ramos, Daisy M. [2 ]
Nip, Jonathan [3 ]
Kalajzic, Ivo [4 ]
Kumbar, Sangamesh G. [1 ,2 ,3 ,5 ]
机构
[1] UConn Hlth, Skeletal Cranial Biol, Farmington, CT 06030 USA
[2] Univ Connecticut, Mat Sci & Engn, Storrs, CT 06269 USA
[3] Univ Connecticut, Dept Biomed Engn, Storrs, CT 06269 USA
[4] Uconn Hlth, Dept Reconstruct Sci, Farmington, CT 06030 USA
[5] UConn Hlth, Dept Orthopaed, Farmington, CT 06030 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
bone; micro-nanostructures; regeneration; stem cells; tissue engineering; MESENCHYMAL STEM-CELLS; MARROW STROMAL CELLS; IN-VITRO; OSTEOGENIC DIFFERENTIATION; CONTROLLED-RELEASE; SURFACE-ROUGHNESS; TISSUE; SCAFFOLDS; HYDROXYAPATITE; ADHESION;
D O I
10.1002/mabi.201700263
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bone tissue engineering strategies utilize biodegradable polymeric matrices alone or in combination with cells and factors to provide mechanical support to bone, while promoting cell proliferation, differentiation, and tissue ingrowth. The performance of mechanically competent, micro-nanostructured polymeric matrices, in combination with bone marrow stromal cells (BMSCs), is evaluated in a critical sized bone defect. Cellulose acetate (CA) is used to fabricate a porous microstructured matrix. Type I collagen is then allowed to self-assemble on these microstructures to create a natural polymer-based, micro-nanostructured matrix (CAc). Poly (lactic-co-glycolic acid) matrices with identical microstructures serve as controls. Significantly higher number of implanted host cells are distributed in the natural polymer based micro-nanostructures with greater bone density and more uniform cell distribution. Additionally, a twofold increase in collagen content is observed with natural polymer based scaffolds. This study establishes the benefits of natural polymer derived micro-nanostructures in combination with donor derived BMSCs to repair and regenerate critical sized bone defects. Natural polymer based materials with mechanically competent micro-nanostructures may serve as an alternative material platform for bone regeneration.
引用
收藏
页数:14
相关论文
共 89 条
[1]   Synthesis, characterization of chitosans and fabrication of sintered chitosan microsphere matrices for bone tissue engineering [J].
Abdel-Fattah, Wafa I. ;
Jiang, Tao ;
El-Bassyouni, Gehan El-Tabie ;
Laurencin, Cato T. .
ACTA BIOMATERIALIA, 2007, 3 (04) :503-514
[2]  
Amini AR, 2016, TISSUE ENG PT A, V22, P610, DOI [10.1089/ten.tea.2015.0310, 10.1089/ten.TEA.2015.0310]
[3]  
Amini AR, 2012, TISSUE ENG PT A, V18, P1376, DOI [10.1089/ten.tea.2011.0076, 10.1089/ten.TEA.2011.0076]
[4]  
Amini Ami R., 2012, Critical Reviews in Biomedical Engineering, V40, P363
[5]   Biodegradation and biocompatibility of PLA and PLGA microspheres [J].
Anderson, James M. ;
Shive, Matthew S. .
ADVANCED DRUG DELIVERY REVIEWS, 2012, 64 :72-82
[6]   Collagen nanofibril self-assembly on a natural polymeric material for the osteoinduction of stem cells in vitro and biocompatibility in vivo [J].
Aravamudhan, A. ;
Ramos, D. M. ;
Jenkins, N. A. ;
Dyment, N. A. ;
Sanders, M. M. ;
Rowe, D. W. ;
Kumbar, S. G. .
RSC ADVANCES, 2016, 6 (84) :80851-80866
[7]  
Aravamudhan A, 2014, NATURAL AND SYNTHETIC BIOMEDICAL POLYMERS, P67
[8]   Osteoinductive Small Molecules: Growth Factor Alternatives for Bone Tissue Engineering [J].
Aravamudhan, Aja ;
Ramos, Daisy M. ;
Nip, Jonathan ;
Subramanian, Aditi ;
James, Roshan ;
Harmon, Matthew D. ;
Yu, Xiaojun ;
Kumbar, Sangamesh G. .
CURRENT PHARMACEUTICAL DESIGN, 2013, 19 (19) :3420-3428
[9]   Cellulose and Collagen Derived Micro-Nano Structured Scaffolds for Bone Tissue Engineering [J].
Aravamudhan, Aja ;
Ramos, Daisy M. ;
Nip, Jonathan ;
Harmon, Matthew D. ;
James, Roshan ;
Deng, Meng ;
Laurencin, Cato T. ;
Yu, Xiaojun ;
Kumbar, Sangamesh G. .
JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2013, 9 (04) :719-731
[10]   Polysaccharides and Proteoglycans in Calcium Carbonate-based Biomineralization [J].
Arias, Jose L. ;
Fernandez, Maria S. .
CHEMICAL REVIEWS, 2008, 108 (11) :4475-4482