Experimental Study on Low-Detection Limit for Immunomagnetic Reduction Assays by Manipulating Reagent Entities

被引:11
作者
Yang, S. Y. [1 ,2 ]
Yang, C. C. [2 ]
Horng, H. E. [2 ]
Shih, B. Y. [2 ]
Chieh, J. J. [2 ]
Hong, C. Y. [3 ]
Yang, H. C. [4 ,5 ]
机构
[1] MagQu Co Ltd, New Taipei City 231, Taiwan
[2] Natl Taiwan Normal Univ, Inst Electroopt Sci & Technol, Taipei 116, Taiwan
[3] Natl Chung Hsing Univ, Grad Inst Biomed Engn, Taichung 402, Taiwan
[4] Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan
[5] Kun Shan Univ, Dept Electroopt Engn, Tainan 710, Taiwan
关键词
Immunomagnetic reduction; magnetic nanoparticles; reagent; PARTICLES;
D O I
10.1109/TNB.2013.2240009
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The low limit of detection (LLD) plays an important role in biomolecular assays, especially for early-stage assays. Biomolecular detections usually involve the use of two main elements: a reagent and an analyzer, which both greatly contribute to the LLD. In this work, the relationships among the LLD and reagent-related factors are investigated. The to-be-detected biomolecule is c-reactive protein (CRP) as an example. The assay method is immunomagnetic reduction (IMR). The components of reagent Fe3O4 are magnetic nanoparticles bio-functionalized with antibodies against CRP, dispersed in pH-7.4 phosphate buffered saline solution. Several key factors of the reagent, such as particle concentration, volume ratio of reagent to sample, and particle size, are manipulated to optimize the LLD of detecting CRP.
引用
收藏
页码:65 / 68
页数:4
相关论文
共 13 条
[1]   Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy [J].
Amemiya, Y ;
Tanaka, T ;
Yoza, B ;
Matsunaga, T .
JOURNAL OF BIOTECHNOLOGY, 2005, 120 (03) :308-314
[2]   Biomolecular reactions studied using changes in Brownian rotation dynamics of magnetic particles [J].
Astalan, AP ;
Ahrentorp, F ;
Johansson, C ;
Larsson, K ;
Krozer, A .
BIOSENSORS & BIOELECTRONICS, 2004, 19 (08) :945-951
[3]   Biological immunoassay utilizing magnetic marker and high Tc superconducting quantum interference device magnetometer [J].
Enpuku, K ;
Kuroda, D ;
Ohba, A ;
Yang, TQ ;
Yoshinaga, K ;
Nakahara, T ;
Kuma, H ;
Hamasaki, N .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2003, 42 (12A) :L1436-L1438
[4]  
Horng H. E., 2006, APPL PHYS LETT, V88
[5]   Nanomagnetic particles for SQUID-based magnetically labeled immunoassay [J].
Horng, HE ;
Yang, SY ;
Huang, YW ;
Jiang, WQ ;
Hong, CY ;
Yang, HC .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2005, 15 (02) :668-671
[6]  
Huang W. H., 2006, J APPL PHYS, V99
[7]   Development of a new detection method for DNA molecules [J].
Katsura, S ;
Yasuda, T ;
Hirano, K ;
Mizuno, A ;
Tanaka, S .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2001, 14 (12) :1131-1134
[8]   Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles [J].
Kötitz, R ;
Weitschies, W ;
Trahms, L ;
Brewer, W ;
Semmler, W .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 194 (1-3) :62-68
[9]   Magnetic particle detection by frequency mixing for immunoassay applications [J].
Krause, Hans-Joachim ;
Wolters, Norbert ;
Zhang, Yi ;
Offenhaeusser, Andreas ;
Miethe, Peter ;
Meyer, Martin H. F. ;
Hartmann, Markus ;
Keusgen, Michael .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 311 (01) :436-444
[10]   JOSEPHSON EFFECTS IN YBA2CU3OY GRAIN-BOUNDARY JUNCTIONS ON (100)MG0 BICRYSTAL SUBSTRATES [J].
LEE, K ;
IGUCHI, I .
APPLIED PHYSICS LETTERS, 1995, 66 (06) :769-771