Compliance-Free, Digital SET and Analog RESET Synaptic Characteristics of Sub-Tantalum Oxide Based Neuromorphic Device

被引:117
作者
Abbas, Yawar [1 ]
Jeon, Yu-Rim [1 ]
Sokolov, Andrey Sergeevich [1 ]
Kim, Sohyeon [1 ]
Ku, Boncheol [1 ]
Choi, Changhwan [1 ]
机构
[1] Hanyang Univ, Div Mat Sci & Engn, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
FACILITATION; PLASTICITY; MEMRISTORS; SYNAPSES; NETWORK; NEURONS; ARRAYS; MODEL; TAOX; CELL;
D O I
10.1038/s41598-018-19575-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A two terminal semiconducting device like a memristor is indispensable to emulate the function of synapse in the working memory. The analog switching characteristics of memristor play a vital role in the emulation of biological synapses. The application of consecutive voltage sweeps or pulses (action potentials) changes the conductivity of the memristor which is considered as the fundamental cause of the synaptic plasticity. In this study, a neuromorphic device using an in-situ growth of sub-tantalum oxide switching layer is fabricated, which exhibits the digital SET and analog RESET switching with an electroforming process without any compliance current (compliance free). The process of electroforming and SET is observed at the positive sweeps of +2.4 V and +0.86 V, respectively, while multilevel RESET is observed with the consecutive negative sweeps in the range of 0 V to -1.2 V. The movement of oxygen vacancies and gradual change in the anatomy of the filament is attributed to digital SET and analog RESET switching characteristics. For the Ti/Ta2O3-x/Pt neuromorphic device, the Ti top and Pt bottom electrodes are considered as counterparts of the pre-synaptic input terminal and a post-synaptic output terminal, respectively.
引用
收藏
页数:10
相关论文
共 68 条
[51]   Interface mediated resistive switching in epitaxial NiO nanostructures [J].
Sullaphen, Jivika ;
Bogle, Kashinath ;
Cheng, Xuan ;
Gregg, John M. ;
Valanoor, Nagarajan .
APPLIED PHYSICS LETTERS, 2012, 100 (20)
[52]   Forming-free resistive switching characteristics of 15 nm-thick multicomponent oxide [J].
Tulu, Berhanu ;
Chang, W. Z. ;
Chu, Jinn P. ;
Wang, S. F. .
APPLIED PHYSICS LETTERS, 2013, 103 (25)
[53]   Mobile Ions, Transport and Redox Processes in Memristive Devices [J].
Valov, I. ;
Luebben, M. ;
Wedig, A. ;
Waser, R. .
SEMICONDUCTORS, DIELECTRICS, AND METALS FOR NANOELECTRONICS 14, 2016, 75 (05) :27-39
[54]   Interfacial interactions and their impact on redox-based resistive switching memories (ReRAMs) [J].
Valov, Ilia .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2017, 32 (09)
[55]   Multilevel resistive switching in Ti/CuxO/Pt memory devices [J].
Wang, Sheng-Yu ;
Huang, Chin-Wen ;
Lee, Dai-Ying ;
Tseng, Tseung-Yuen ;
Chang, Ting-Chang .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (11)
[56]   Synaptic Learning and Memory Functions Achieved Using Oxygen Ion Migration/Diffusion in an Amorphous InGaZnO Memristor [J].
Wang, Zhong Qiang ;
Xu, Hai Yang ;
Li, Xing Hua ;
Yu, Hao ;
Liu, Yi Chun ;
Zhu, Xiao Juan .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (13) :2759-2765
[57]  
Wang ZR, 2017, NAT MATER, V16, P101, DOI [10.1038/nmat4756, 10.1038/NMAT4756]
[58]   Engineering incremental resistive switching in TaOx based memristors for brain-inspired computing [J].
Wang, Zongwei ;
Yin, Minghui ;
Zhang, Teng ;
Cai, Yimao ;
Wang, Yangyuan ;
Yang, Yuchao ;
Huang, Ru .
NANOSCALE, 2016, 8 (29) :14015-14022
[59]   Nanoionics-based resistive switching memories [J].
Waser, RaineR ;
Aono, Masakazu .
NATURE MATERIALS, 2007, 6 (11) :833-840
[60]  
Watt Alanna J, 2010, Front Synaptic Neurosci, V2, P5, DOI 10.3389/fnsyn.2010.00005