Compliance-Free, Digital SET and Analog RESET Synaptic Characteristics of Sub-Tantalum Oxide Based Neuromorphic Device

被引:114
作者
Abbas, Yawar [1 ]
Jeon, Yu-Rim [1 ]
Sokolov, Andrey Sergeevich [1 ]
Kim, Sohyeon [1 ]
Ku, Boncheol [1 ]
Choi, Changhwan [1 ]
机构
[1] Hanyang Univ, Div Mat Sci & Engn, Seoul 04763, South Korea
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
新加坡国家研究基金会;
关键词
FACILITATION; PLASTICITY; MEMRISTORS; SYNAPSES; NETWORK; NEURONS; ARRAYS; MODEL; TAOX; CELL;
D O I
10.1038/s41598-018-19575-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A two terminal semiconducting device like a memristor is indispensable to emulate the function of synapse in the working memory. The analog switching characteristics of memristor play a vital role in the emulation of biological synapses. The application of consecutive voltage sweeps or pulses (action potentials) changes the conductivity of the memristor which is considered as the fundamental cause of the synaptic plasticity. In this study, a neuromorphic device using an in-situ growth of sub-tantalum oxide switching layer is fabricated, which exhibits the digital SET and analog RESET switching with an electroforming process without any compliance current (compliance free). The process of electroforming and SET is observed at the positive sweeps of +2.4 V and +0.86 V, respectively, while multilevel RESET is observed with the consecutive negative sweeps in the range of 0 V to -1.2 V. The movement of oxygen vacancies and gradual change in the anatomy of the filament is attributed to digital SET and analog RESET switching characteristics. For the Ti/Ta2O3-x/Pt neuromorphic device, the Ti top and Pt bottom electrodes are considered as counterparts of the pre-synaptic input terminal and a post-synaptic output terminal, respectively.
引用
收藏
页数:10
相关论文
共 68 条
  • [11] DOUGLAS R, 1995, ANNU REV NEUROSCI, V18, P255, DOI 10.1146/annurev.neuro.18.1.255
  • [12] Understanding electroforming in bipolar resistive switching oxides
    Gomez-Marlasca, F.
    Ghenzi, N.
    Rozenberg, M. J.
    Levy, P.
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (04)
  • [13] Learning Abilities Achieved by a Single Solid-State Atomic Switch
    Hasegawa, Tsuyoshi
    Ohno, Takeo
    Terabe, Kazuya
    Tsuruoka, Tohru
    Nakayama, Tomonobu
    Gimzewski, James K.
    Aono, Masakazu
    [J]. ADVANCED MATERIALS, 2010, 22 (16) : 1831 - +
  • [14] Hebb D. O., 1999, BRAIN RES B, V50, P437
  • [15] Compliance-Free ZrO2/ZrO2- x/ZrO2 Resistive Memory with Controllable Interfacial Multistate Switching Behaviour
    Huang, Ruomeng
    Yan, Xingzhao
    Ye, Sheng
    Kashtiban, Reza
    Beanland, Richard
    Morgan, Katrina A.
    Charlton, Martin D. B.
    de Groot, C. H.
    [J]. NANOSCALE RESEARCH LETTERS, 2017, 12
  • [16] A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity
    Indiveri, G
    Chicca, E
    Douglas, R
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (01): : 211 - 221
  • [17] Large-scale model of mammalian thalamocortical systems
    Izhikevich, Eugene M.
    Edelman, Gerald M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (09) : 3593 - 3598
  • [18] Jeong D. S., 2006, APPL PHYS LETT, V89, P2004
  • [19] Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere
    Jeong, Doo Seok
    Schroeder, Herbert
    Breuer, Uwe
    Waser, Rainer
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 104 (12)
  • [20] Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor
    Jeong, YeonJoo
    Kim, Sungho
    Lu, Wei D.
    [J]. APPLIED PHYSICS LETTERS, 2015, 107 (17)