Multiple MYB Activators and Repressors Collaboratively Regulate the Juvenile Red Fading in Leaves of Sweetpotato

被引:28
作者
Deng, Jiliang [1 ]
Wu, Danning [1 ]
Shi, Jie [1 ]
Balfour, Kelly [2 ]
Wang, Huafeng [1 ]
Zhu, Guopeng [3 ]
Liu, Yonghua [3 ]
Wang, Jian [4 ]
Zhu, Zhixin [1 ]
机构
[1] Hainan Univ, Sch Life & Pharmaceut Sci, Key Lab Trop Biol Resources, Minist Educ, Haikou, Hainan, Peoples R China
[2] Algoma Univ, Dept Biol, Sault Ste Marie, ON, Canada
[3] Hainan Univ, Coll Hort, Haikou, Hainan, Peoples R China
[4] Hainan Univ, Coll Forestry, Key Lab Germplasm Resources Biol Trop Special Orn, Haikou, Hainan, Peoples R China
基金
中国国家自然科学基金;
关键词
anthocyanin; Ipomoea; juvenile red fading; MBW complex; MYB activators; MYB repressors; sweetpotato; COMMON MORNING GLORY; ANTHOCYANIN BIOSYNTHESIS; YOUNG LEAVES; TRANSCRIPTION FACTORS; GENE; PIGMENTATION; BHLH; PATHWAY; ACCUMULATION; R2R3-MYB;
D O I
10.3389/fpls.2020.00941
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Juvenile red fading describes the phenomenon in plants whereby red young leaves gradually turn green as they mature. While this phenomenon is commonly observed, the underlying molecular mechanism is still obscure as the classic model plants do not exhibit this process. Here, the molecular mechanism for the loss of anthocyanins during juvenile red fading were explored in the sweetpotato (Ipomoea batatasL.) cultivar "Chuanshan Zi". The MYB-bHLH-WDR (MBW) regulatory complexes for anthocyanins were examined with five stages of leaf development from C1 to C5. Alternating accumulation of anthocyanins and chlorophylls caused the leaf color change. Five anthocyanin components were identified by ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS), and their contents were highest at stage C2. Transcriptomic analysis showed massive gene expression alteration during leaf development. The anthocyanin structural genes expressed in sweetpotato leaves were screened and found to be highly comparable with those identified in morning glories. The screened anthocyanin regulatory genes included one bHLH (IbbHLH2), one WDR (IbWDR1), three MYB activators (IbMYB1,IbMYB2,andIbMYB3), and five MYB repressors (IbMYB27,IbMYBx,IbMYB4a,IbMYB4b,andIbMYB4c). The expression trends of MYBs were key to the red fading process: the activators were highly expressed in early red leaves and were all accompanied by simultaneously expressed MYB repressors, which may act to prevent excessive accumulation of anthocyanins. The only antagonistic repressor,IbMYB4b, was highly expressed in green leaves, and may be critical for declined anthocyanin content at later stages. Further functional verification of the above transcription factors were conducted by promoter activation tests. These tests showed that the MBW complexes of IbMYB1/IbMYB2/IbMYB3-IbbHLH2-IbWDR1 not only activated promoters of anthocyanin structural genesIbCHS-DandIbDFR-B, but also promoters forIbbHLH2andIbMYB27, indicating both hierarchical and feedback regulations. This study outlines the elaborate regulatory network of MBW complexes involving multiple MYBs which allow for the timely accumulation of anthocyanins in sweetpotato leaves. These results may also provide clues for similar studies of juvenile red fading in other plant species.
引用
收藏
页数:18
相关论文
共 54 条
[1]   The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco [J].
Aharoni, A ;
De Vos, CHR ;
Wein, M ;
Sun, ZK ;
Greco, R ;
Kroon, A ;
Mol, JNM ;
O'Connell, AP .
PLANT JOURNAL, 2001, 28 (03) :319-332
[2]   Subspecialization of R2R3-MYB Repressors for Anthocyanin and Proanthocyanidin Regulation in Forage Legumes [J].
Albert, Nick W. .
FRONTIERS IN PLANT SCIENCE, 2015, 6
[3]   A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots [J].
Albert, Nick W. ;
Davies, Kevin M. ;
Lewis, David H. ;
Zhang, Huaibi ;
Montefiori, Mirco ;
Brendolise, Cyril ;
Boase, Murray R. ;
Ngo, Hanh ;
Jameson, Paula E. ;
Schwinn, Kathy E. .
PLANT CELL, 2014, 26 (03) :962-980
[4]   Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning [J].
Albert, Nick W. ;
Lewis, David H. ;
Zhang, Huaibi ;
Schwinn, Kathy E. ;
Jameson, Paula E. ;
Davies, Kevin M. .
PLANT JOURNAL, 2011, 65 (05) :771-784
[5]   Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J].
Borevitz, JO ;
Xia, YJ ;
Blount, J ;
Dixon, RA ;
Lamb, C .
PLANT CELL, 2000, 12 (12) :2383-2393
[6]   A putative R3 MYB repressor is the candidate gene underlying atroviolacium, a locus for anthocyanin pigmentation in tomato fruit [J].
Cao, Xue ;
Qiu, Zhengkun ;
Wang, Xiaotian ;
Van Giang, Tong ;
Liu, Xiaolin ;
Wang, Jing ;
Wang, Xiaoxuan ;
Gao, Jianchang ;
Guo, Yanmei ;
Du, Yongchen ;
Wang, Guoping ;
Huang, Zejun .
JOURNAL OF EXPERIMENTAL BOTANY, 2017, 68 (21-22) :5745-5758
[7]   Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana [J].
Carey, CC ;
Strahle, JT ;
Selinger, DA ;
Chandler, VL .
PLANT CELL, 2004, 16 (02) :450-464
[8]   The Phenylpropanoid Pathway Is Controlled at Different Branches by a Set of R2R3-MYB C2 Repressors in Grapevine [J].
Cavallini, Erika ;
Tomas Matus, Jose ;
Finezzo, Laura ;
Zenoni, Sara ;
Loyola, Rodrigo ;
Guzzo, Flavia ;
Schlechter, Rudolf ;
Ageorges, Agnes ;
Arce-Johnson, Patricio ;
Tornielli, Giovanni Battista .
PLANT PHYSIOLOGY, 2015, 167 (04) :1448-U552
[9]   Red young leaves have less mechanical defence than green young leaves [J].
Chen, Ying-Zhuo ;
Huang, Shuang-Quan .
OIKOS, 2013, 122 (07) :1035-1041
[10]   Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower [J].
Chiu, Li-Wei ;
Li, Li .
PLANTA, 2012, 236 (04) :1153-1164