On a functional limit result for increments of a fractional Brownian motion

被引:13
作者
Wang, WS [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310028, Peoples R China
[2] Hangzhou Teachers Coll, Dept Math, Hangzhou 310012, Peoples R China
关键词
modulus of continuity; fractional Brownian motion; law of the iterated logarithm; increment;
D O I
10.1023/A:1013829802476
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Large deviation results for Gaussian processes are presented. As an application, we obtain a functional limit result for small increments of a fractional Brownian motion. Levy's modulus of continuity for a fractional Brownian motion is obtained as a special case.
引用
收藏
页码:153 / 170
页数:18
相关论文
共 12 条
[1]  
BORELL C, 1977, ANN I H POINCARE B, V13, P231
[2]  
CHEN B, 1998, THESIS U CARLETON CA
[3]  
Csorgo M., 1981, Probability and Mathematical Statistics: a series of monographs and textbooks
[4]   RATES OF CLUSTERING FOR SOME GAUSSIAN SELF-SIMILAR PROCESSES [J].
GOODMAN, V ;
KUELBS, J .
PROBABILITY THEORY AND RELATED FIELDS, 1991, 88 (01) :47-75
[5]   SOME INEQUALITIES FOR GAUSSIAN-PROCESSES AND APPLICATIONS [J].
GORDON, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1985, 50 (04) :265-289
[6]  
LIN ZY, 1992, STRONG LIMIT THEOREM
[7]   SMALL VALUES OF GAUSSIAN-PROCESSES AND FUNCTIONAL LAWS OF THE ITERATED LOGARITHM [J].
MONRAD, D ;
ROOTZEN, H .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 101 (02) :173-192
[8]   STRASSENS VERSION OF LAW OF ITERATED LOGARITHM FOR GAUSSIAN PROCESSES [J].
OODAIRA, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 21 (04) :289-&
[9]   ON THE SIZE OF THE INCREMENTS OF NONSTATIONARY GAUSSIAN-PROCESSES [J].
ORTEGA, J .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1984, 18 (01) :47-56
[10]   GENERALIZATION OF STRASSEN FUNCTIONAL LAW OF ITERATED LOGARITHM [J].
REVESZ, P .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 50 (03) :257-264