Free 2-step nilpotent Lie algebras and indecomposable representations

被引:3
作者
Cagliero, Leandro [1 ]
Gutierrez Frez, Luis [2 ]
Szechtman, Fernando [3 ]
机构
[1] Univ Nacl Cordoba, CONICET, FAMAF, CIEM, Cordoba, Argentina
[2] Univ Austral Chile, Inst Ciencias Fis & Matemat, Valdivia, Chile
[3] Univ Regina, Dept Math & Stat, Regina, SK, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Free 2-step nilpotent Lie algebra; uniserial representation; FINITE-DIMENSIONAL REPRESENTATIONS; CLASSIFICATION;
D O I
10.1080/00927872.2017.1404086
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an algebraically closed field F of characteristic 0 and an F-vector space V, let L(V)=V circle plus(2)(V) denote the free 2-step nilpotent Lie algebra associated to V. In this paper, we classify all uniserial representations of the solvable Lie algebra g = < x > L(V), where x acts on V via an arbitrary invertible Jordan block.
引用
收藏
页码:2990 / 3005
页数:16
相关论文
共 18 条
[1]   Classification of finite dimensional uniserial representations of conformal Galilei algebras [J].
Cagliero, Leandro ;
Gutierrez Frez, Luis ;
Szechtman, Fernando .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (10)
[2]   Indecomposable Modules of 2-step Solvable Lie Algebras in Arbitrary Characteristic [J].
Cagliero, Leandro ;
Szechtman, Fernando .
COMMUNICATIONS IN ALGEBRA, 2016, 44 (01) :1-10
[3]   On the Theorem of the Primitive Element with Applications to the Representation Theory of Associative and Lie Algebras [J].
Cagliero, Leandro ;
Szechtman, Fernando .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (04) :735-748
[4]   The classification of uniserial sl(2) (sic) V(m)-modules and a new interpretation of the Racah-Wigner 6j-symbol [J].
Cagliero, Leandro ;
Szechtman, Fernando .
JOURNAL OF ALGEBRA, 2013, 386 :142-175
[5]   Indecomposable modules of a family of solvable Lie algebras [J].
Casati, Paolo ;
Previtali, Andrea ;
Szechtman, Fernando .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 531 :423-446
[6]   The classification of the perfect cyclic sf(n+1) α Cn+l-modules [J].
Casati, Paolo .
JOURNAL OF ALGEBRA, 2017, 476 :311-343
[7]  
Casati P, 2010, J LIE THEORY, V20, P393
[8]   Indecomposable representations of the Diamond Lie algebra [J].
Casati, Paolo ;
Minniti, Stefania ;
Salari, Valentina .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (03)
[9]   A class of nonunitary, finite dimensional representations of the euclidean algebra e(2) [J].
Douglas, Andrew ;
Premat, Alejandra .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (05) :1433-1448
[10]   INDECOMPOSABLE REPRESENTATIONS OF THE EUCLIDEAN ALGEBRA e(3) FROM IRREDUCIBLE REPRESENTATIONS OF Sl(4, C) [J].
Douglas, Andrew ;
Repka, Joe .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 83 (03) :439-449