Atomic Layer Deposition of a Submonolayer Catalyst for the Enhanced Photoelectrochemical Performance of Water Oxidation with Hematite

被引:240
作者
Riha, Shannon C. [1 ,2 ]
Klahr, Benjamin M. [3 ]
Tyo, Eric C. [5 ]
Seifert, Soenke [4 ]
Vajda, Stefan [1 ,5 ,6 ]
Pellin, Michael J. [1 ,2 ]
Hamann, Thomas W. [3 ]
Martinson, Alex B. F. [1 ,2 ]
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Argonne Northwestern Solar Energy Res ANSER Ctr, Argonne, IL 60439 USA
[3] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
[4] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA
[5] Yale Univ, Sch Engn & Appl Sci, Dept Chem & Environm Engn, New Haven, CT 06520 USA
[6] Argonne Natl Lab, Nanosci & Technol Div, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
hematite; Fe2O3; photoelectrocatalysis; water oxidation; electrochemical impedance spectroscopy; X-ray absorption spectroscopy; XANES; DRIVEN OXYGEN EVOLUTION; SOLAR-ENERGY CONVERSION; THIN-FILMS; SIZE; PHOTOANODES; KINETICS; SURFACE; DEHYDROGENATION; PHOTOLYSIS; HYDROGEN;
D O I
10.1021/nn305639z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hematite photoanodes were coated with an ultrathin cobalt oxide layer by atomic layer deposition (AID). The optimal coating-1 ALD cycle, which amounts to <1 monolayer of Co(OH)(2)/Co3O4-resulted in significantly enhanced photoelectrochemical water oxidation performance. A stable, 100-200 mV cathodic shift In the photocurrent onset potential was observed that is correlated to an order of magnitude reduction in the resistance to charge transfer at the Fe2O3/H2O Interface. Furthermore, the optical transparency of the ultrathin Co(OH)(2)/Co3O4 coating establishes it as a particularly advantageous treatment for nanostructured water oxidation photoanodes. The photocurrent of catalyst-coated nanostructured inverse opal scaffold hematite photoanodes reached 0.81 and 2.1 mA/cm(2) at 1.23 and 1.53 V, respectively.
引用
收藏
页码:2396 / 2405
页数:10
相关论文
共 71 条
[21]   WATER SPLITTING Catalyst or spectator? [J].
Gamelin, Daniel R. .
NATURE CHEMISTRY, 2012, 4 (12) :965-967
[22]   Systematic catalytic current enhancement for the oxidation of water at nanostructured iron(III) oxide electrodes [J].
Gemmer, Julia ;
Hinrichsen, Yvonne ;
Abel, Annik ;
Bachmann, Julien .
JOURNAL OF CATALYSIS, 2012, 290 :220-224
[23]   Atomic Layer Deposition: An Overview [J].
George, Steven M. .
CHEMICAL REVIEWS, 2010, 110 (01) :111-131
[24]   Solar energy conversion toward 1 terawatt [J].
Ginley, David ;
Green, Martin A. ;
Collins, Reuben .
MRS BULLETIN, 2008, 33 (04) :355-364
[25]   Structural, optical and electrical properties of undoped polycrystalline hematite thin films produced using filtered arc deposition [J].
Glasscock, J. A. ;
Barnes, P. R. F. ;
Plumb, I. C. ;
Bendavid, A. ;
Martin, P. J. .
THIN SOLID FILMS, 2008, 516 (08) :1716-1724
[26]   Photoelectrochemical Performance of Nanostructured Ti- and Sn-Doped α-Fe2O3 Photoanodes [J].
Hahn, Nathan T. ;
Mullins, C. Buddie .
CHEMISTRY OF MATERIALS, 2010, 22 (23) :6474-6482
[27]   Reactive Ballistic Deposition of α-Fe2O3 Thin Films for Photoelectrochemical Water Oxidation [J].
Hahn, Nathan T. ;
Ye, Heechang ;
Flaherty, David W. ;
Bard, Allen J. ;
Mullins, C. Buddie .
ACS NANO, 2010, 4 (04) :1977-1986
[28]   Splitting water with rust: hematite photoelectrochemistry [J].
Hamann, Thomas W. .
DALTON TRANSACTIONS, 2012, 41 (26) :7830-7834
[29]   Assembly of large-area, highly ordered, crack-free inverse opal films [J].
Hatton, Benjamin ;
Mishchenko, Lidiya ;
Davis, Stan ;
Sandhage, Kenneth H. ;
Aizenberg, Joanna .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (23) :10354-10359
[30]   Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers [J].
Hisatomi, Takashi ;
Le Formal, Florian ;
Cornuz, Maurin ;
Brillet, Jeremie ;
Tetreault, Nicolas ;
Sivula, Kevin ;
Graetzel, Michael .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (07) :2512-2515