Atomic Layer Deposition of a Submonolayer Catalyst for the Enhanced Photoelectrochemical Performance of Water Oxidation with Hematite

被引:240
作者
Riha, Shannon C. [1 ,2 ]
Klahr, Benjamin M. [3 ]
Tyo, Eric C. [5 ]
Seifert, Soenke [4 ]
Vajda, Stefan [1 ,5 ,6 ]
Pellin, Michael J. [1 ,2 ]
Hamann, Thomas W. [3 ]
Martinson, Alex B. F. [1 ,2 ]
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Argonne Northwestern Solar Energy Res ANSER Ctr, Argonne, IL 60439 USA
[3] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
[4] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA
[5] Yale Univ, Sch Engn & Appl Sci, Dept Chem & Environm Engn, New Haven, CT 06520 USA
[6] Argonne Natl Lab, Nanosci & Technol Div, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
hematite; Fe2O3; photoelectrocatalysis; water oxidation; electrochemical impedance spectroscopy; X-ray absorption spectroscopy; XANES; DRIVEN OXYGEN EVOLUTION; SOLAR-ENERGY CONVERSION; THIN-FILMS; SIZE; PHOTOANODES; KINETICS; SURFACE; DEHYDROGENATION; PHOTOLYSIS; HYDROGEN;
D O I
10.1021/nn305639z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hematite photoanodes were coated with an ultrathin cobalt oxide layer by atomic layer deposition (AID). The optimal coating-1 ALD cycle, which amounts to <1 monolayer of Co(OH)(2)/Co3O4-resulted in significantly enhanced photoelectrochemical water oxidation performance. A stable, 100-200 mV cathodic shift In the photocurrent onset potential was observed that is correlated to an order of magnitude reduction in the resistance to charge transfer at the Fe2O3/H2O Interface. Furthermore, the optical transparency of the ultrathin Co(OH)(2)/Co3O4 coating establishes it as a particularly advantageous treatment for nanostructured water oxidation photoanodes. The photocurrent of catalyst-coated nanostructured inverse opal scaffold hematite photoanodes reached 0.81 and 2.1 mA/cm(2) at 1.23 and 1.53 V, respectively.
引用
收藏
页码:2396 / 2405
页数:10
相关论文
共 71 条
[1]   Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition [J].
Bakke, Jonathan R. ;
Pickrahn, Katie L. ;
Brennan, Thomas P. ;
Bent, Stacey F. .
NANOSCALE, 2011, 3 (09) :3482-3508
[2]   ARTIFICIAL PHOTOSYNTHESIS - SOLAR SPLITTING OF WATER TO HYDROGEN AND OXYGEN [J].
BARD, AJ ;
FOX, MA .
ACCOUNTS OF CHEMICAL RESEARCH, 1995, 28 (03) :141-145
[3]  
Barreca D, 2001, CHEM MATER, V13, P588, DOI [10.1021/cm001041x, 10.1021/cm00104lx]
[4]   Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting [J].
Barroso, Monica ;
Mesa, Camilo A. ;
Pendlebury, Stephanie R. ;
Cowan, Alexander J. ;
Hisatomi, Takashi ;
Sivula, Kevin ;
Graetzel, Michael ;
Klug, David R. ;
Durrant, James R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (39) :15640-15645
[5]   The Role of Cobalt Phosphate in Enhancing the Photocatalytic Activity of α-Fe2O3 toward Water Oxidation [J].
Barroso, Monica ;
Cowan, Alexander J. ;
Pendlebury, Stephanie R. ;
Graetzel, Michael ;
Klug, David R. ;
Durrant, James R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (38) :14868-14871
[6]   Photoelectrochemical studies of oriented nanorod thin films of hematite [J].
Beermann, N ;
Vayssieres, L ;
Lindquist, SE ;
Hagfeldt, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (07) :2456-2461
[7]   Equivalent Circuit of Electrons and Holes in Thin Semiconductor Films for Photoelectrochemical Water Splitting Applications [J].
Bertoluzzi, Luca ;
Bisquert, Juan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (17) :2517-2522
[8]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Grosvenor, Andrew P. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2717-2730
[9]  
BJORKSTEN U, 1994, CHEM MATER, V6, P858
[10]   LIMITING AND REALIZABLE EFFICIENCIES OF SOLAR PHOTOLYSIS OF WATER [J].
BOLTON, JR ;
STRICKLER, SJ ;
CONNOLLY, JS .
NATURE, 1985, 316 (6028) :495-500