Highly stretchable strain sensors with improved sensitivity enabled by a hybrid of carbon nanotube and graphene

被引:13
作者
Wang, Leilei [1 ]
Choi, Jungwook [1 ]
机构
[1] Chung Ang Univ, Sch Mech Engn, Seoul 06974, South Korea
基金
新加坡国家研究基金会;
关键词
Stretchable device; Strain sensor; Carbon nanomaterials; Heterogeneous materials; Sensitivity; THERMAL EXFOLIATION; REDUCTION; WORK;
D O I
10.1186/s40486-022-00160-9
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The development of high-performance strain sensors has attracted significant attention in the field of smart wearable devices. However, stretchable strain sensors usually suffer from a trade-off between sensitivity and sensing range. In this study, we investigate a highly sensitive and stretchable piezoresistive strain sensor composed of a hybrid film of 1D multi-walled carbon nanotube (MWCNT) and 2D graphene that forms a percolation network on Ecoflex substrate by spray coating. The mass of spray-coated MWCNT and graphene and their mass ratio are modulated to overcome the trade-off between strain sensitivity and sensing range. We experimentally found that a stable percolation network is formed by 0.18 mg of MWCNTs (coating area of 200 mm(2)), with a maximum gauge factor (GF) of 1,935.6 and stretchability of 814.2%. By incorporating the 0.36 mg of graphene into the MWCNT film (i.e., a mass ratio of 1:2 between MWCNT and graphene), the GF is further improved to 12,144.7 in a strain range of 650-700%. This high GF is caused by the easy separation of the graphene network under the applied strain due to its two-dimensional (2D) shape. High stretchability originates from the high aspect ratio of MWCNTs that bridges the randomly distributed graphenes, maintaining a conductive network even under sizeable tensile strain. Furthermore, a small difference in work function between MWCNT and graphene and their stable percolation network enables sensitive UV light detection even under a significant strain of 300% that cannot be achieved by sensors composed of MWCNT- or graphene-only. The hybrids of MWCNT and graphene provide an opportunity to achieve high-performance stretchable devices.
引用
收藏
页数:9
相关论文
共 40 条
[1]   Mechanically interlocked 3D multi-material micromachines [J].
Alcantara, C. C. J. ;
Landers, F. C. ;
Kim, S. ;
De Marco, C. ;
Ahmed, D. ;
Nelson, B. J. ;
Pane, S. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[2]   Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites [J].
Amjadi, Morteza ;
Yoon, Yong Jin ;
Park, Inkyu .
NANOTECHNOLOGY, 2015, 26 (37)
[3]   Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite [J].
Amjadi, Morteza ;
Pichitpajongkit, Aekachan ;
Lee, Sangjun ;
Ryu, Seunghwa ;
Park, Inkyu .
ACS NANO, 2014, 8 (05) :5154-5163
[4]   Synergistic effect of graphene/multiwalled carbon nanotube hybrid fillers on mechanical, electrical and EMI shielding properties of polycarbonate/ethylene methyl acrylate nanocomposites [J].
Bagotia, Nisha ;
Choudhary, Veena ;
Sharma, D. K. .
COMPOSITES PART B-ENGINEERING, 2019, 159 :378-388
[5]   Sensitive, High-Strain, High-Rate Bodily Motion Sensors Based on Graphene-Rubber Composites [J].
Boland, Conor S. ;
Khan, Umar ;
Backes, Claudia ;
O'Neill, Arlene ;
McCauley, Joe ;
Duane, Shane ;
Shanker, Ravi ;
Liu, Yang ;
Jurewicz, Izabela ;
Dalton, Alan B. ;
Coleman, Jonathan N. .
ACS NANO, 2014, 8 (09) :8819-8830
[6]   Critical temperatures in the synthesis of graphene-like materials by thermal exfoliation-reduction of graphite oxide [J].
Botas, Cristina ;
Alvarez, Patricia ;
Blanco, Clara ;
Santamaria, Ricardo ;
Granda, Marcos ;
Dolores Gutierrez, M. ;
Rodriguez-Reinoso, Francisco ;
Menendez, Rosa .
CARBON, 2013, 52 :476-485
[7]   Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range [J].
Cai, Yichen ;
Shen, Jie ;
Ge, Gang ;
Zhang, Yizhou ;
Jin, Wanqin ;
Huang, Wei ;
Shao, Jinjun ;
Yang, Jian ;
Dong, Xiaochen .
ACS NANO, 2018, 12 (01) :56-62
[8]   Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing [J].
Chao, Mingyuan ;
Wang, Yonggang ;
Ma, Di ;
Wu, Xiaoxuan ;
Zhang, Weixia ;
Zhang, Liqun ;
Wan, Pengbo .
NANO ENERGY, 2020, 78
[9]   A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich structure [J].
Chen, Song ;
Wei, Yong ;
Yuan, Xue ;
Lin, Yong ;
Liu, Lan .
JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (19) :4304-4311
[10]   Modulus and adhesion of Sylgard 184, Solaris, and Ecoflex 00-30 silicone elastomers with varied mixing ratios [J].
Darby, Daniel R. ;
Cai, Zhuoyun ;
Mason, Christopher R. ;
Pham, Jonathan T. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (25)