Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic applications: A wet-chemical approach

被引:76
作者
Wang, Chenbo [1 ]
Jiang, Zifei [1 ]
Wei, Lin [2 ]
Chen, Yanxue [1 ]
Jiao, Jun [3 ]
Eastman, Micah [3 ]
Liu, Hong [1 ]
机构
[1] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[2] Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Peoples R China
[3] Portland State Univ, Dept Phys, Portland, OR 97207 USA
基金
中国国家自然科学基金;
关键词
QDSSC; TiO2; CdS; Wet-chemical; Nanorod; MULTIPLE EXCITON GENERATION; SOLAR-CELLS; EFFICIENCY; SIZE; NANOSTRUCTURES; NANOPARTICLES; NANOCRYSTALS; GROWTH;
D O I
10.1016/j.nanoen.2012.02.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We combine CdS semiconductor quantum dots and single-crystalline rutile TiO2 nanorod arrays to produce a practical quantum dot sensitized solar cell. A facile wet-chemical approach was implemented for growth of this CdS@TiO2 architecture. Rutile TiO2 nanorod arrays with lengths of 1-2 mu m and diameters of 40-60 nm were synthesized on fluorine-doped tin oxide glass by a hydrothermal process in a titanium tetrachloride precursor solution. CdS quantum dots with a size of 5-10 nm were deposited onto a TiO2 nanorod surface using an ultrasonic-assisted chemical bath deposition method. The resulting CdS quantum dots and TiO2 nanorods formed a type-II heterojunction and showed increased absorption over visible light range. Incident photon-to-current conversion efficiencies (IPCE) as high as 85% and power conversion efficiencies of 2.54% were obtained using a polysulfide electrolyte. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:440 / 447
页数:8
相关论文
共 39 条
  • [1] Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures
    Baker, David R.
    Kamat, Prashant V.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (05) : 805 - 811
  • [2] Electron transfer dynamics in quantum dot/titanium dioxide composites formed by in situ chemical bath deposition
    Blackburn, JL
    Selmarten, DC
    Nozik, AJ
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (51) : 14154 - 14157
  • [3] Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays
    Chang, Chi-Yang
    Chang, Hsu-Yu
    Chen, Chia-Yi
    Tsai, Ming-Wei
    Chang, Yi-Tsung
    Lee, Si-Chen
    Tang, Shiang-Feng
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (16)
  • [4] Synthesis of Conjugated Polymers for Organic Solar Cell Applications
    Cheng, Yen-Ju
    Yang, Sheng-Hsiung
    Hsu, Chain-Shu
    [J]. CHEMICAL REVIEWS, 2009, 109 (11) : 5868 - 5923
  • [5] High-efficiency organic solar concentrators for photovoltaics
    Currie, Michael J.
    Mapel, Jonathan K.
    Heidel, Timothy D.
    Goffri, Shalom
    Baldo, Marc A.
    [J]. SCIENCE, 2008, 321 (5886) : 226 - 228
  • [6] Eva B., 2007, SOL ENERG MAT SOL C, V91, P954
  • [7] High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction
    Geisz, J. F.
    Kurtz, Sarah
    Wanlass, M. W.
    Ward, J. S.
    Duda, A.
    Friedman, D. J.
    Olson, J. M.
    McMahon, W. E.
    Moriarty, T. E.
    Kiehl, J. T.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (02)
  • [8] Modeling High-Efficiency Quantum Dot Sensitized Solar Cells
    Gonzalez-Pedro, Victoria
    Xu, Xueqing
    Mora-Sero, Ivan
    Bisquert, Juan
    [J]. ACS NANO, 2010, 4 (10) : 5783 - 5790
  • [9] Photoelectrochemical cells
    Grätzel, M
    [J]. NATURE, 2001, 414 (6861) : 338 - 344
  • [10] Conjugated polymer-based organic solar cells
    Guenes, Serap
    Neugebauer, Helmut
    Sariciftci, Niyazi Serdar
    [J]. CHEMICAL REVIEWS, 2007, 107 (04) : 1324 - 1338