Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic applications: A wet-chemical approach

被引:79
作者
Wang, Chenbo [1 ]
Jiang, Zifei [1 ]
Wei, Lin [2 ]
Chen, Yanxue [1 ]
Jiao, Jun [3 ]
Eastman, Micah [3 ]
Liu, Hong [1 ]
机构
[1] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[2] Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Peoples R China
[3] Portland State Univ, Dept Phys, Portland, OR 97207 USA
基金
中国国家自然科学基金;
关键词
QDSSC; TiO2; CdS; Wet-chemical; Nanorod; MULTIPLE EXCITON GENERATION; SOLAR-CELLS; EFFICIENCY; SIZE; NANOSTRUCTURES; NANOPARTICLES; NANOCRYSTALS; GROWTH;
D O I
10.1016/j.nanoen.2012.02.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We combine CdS semiconductor quantum dots and single-crystalline rutile TiO2 nanorod arrays to produce a practical quantum dot sensitized solar cell. A facile wet-chemical approach was implemented for growth of this CdS@TiO2 architecture. Rutile TiO2 nanorod arrays with lengths of 1-2 mu m and diameters of 40-60 nm were synthesized on fluorine-doped tin oxide glass by a hydrothermal process in a titanium tetrachloride precursor solution. CdS quantum dots with a size of 5-10 nm were deposited onto a TiO2 nanorod surface using an ultrasonic-assisted chemical bath deposition method. The resulting CdS quantum dots and TiO2 nanorods formed a type-II heterojunction and showed increased absorption over visible light range. Incident photon-to-current conversion efficiencies (IPCE) as high as 85% and power conversion efficiencies of 2.54% were obtained using a polysulfide electrolyte. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:440 / 447
页数:8
相关论文
共 39 条
[1]   Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures [J].
Baker, David R. ;
Kamat, Prashant V. .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (05) :805-811
[2]   Electron transfer dynamics in quantum dot/titanium dioxide composites formed by in situ chemical bath deposition [J].
Blackburn, JL ;
Selmarten, DC ;
Nozik, AJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (51) :14154-14157
[3]   Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays [J].
Chang, Chi-Yang ;
Chang, Hsu-Yu ;
Chen, Chia-Yi ;
Tsai, Ming-Wei ;
Chang, Yi-Tsung ;
Lee, Si-Chen ;
Tang, Shiang-Feng .
APPLIED PHYSICS LETTERS, 2007, 91 (16)
[4]   Synthesis of Conjugated Polymers for Organic Solar Cell Applications [J].
Cheng, Yen-Ju ;
Yang, Sheng-Hsiung ;
Hsu, Chain-Shu .
CHEMICAL REVIEWS, 2009, 109 (11) :5868-5923
[5]   High-efficiency organic solar concentrators for photovoltaics [J].
Currie, Michael J. ;
Mapel, Jonathan K. ;
Heidel, Timothy D. ;
Goffri, Shalom ;
Baldo, Marc A. .
SCIENCE, 2008, 321 (5886) :226-228
[6]  
Eva B., 2007, SOL ENERG MAT SOL C, V91, P954
[7]   High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction [J].
Geisz, J. F. ;
Kurtz, Sarah ;
Wanlass, M. W. ;
Ward, J. S. ;
Duda, A. ;
Friedman, D. J. ;
Olson, J. M. ;
McMahon, W. E. ;
Moriarty, T. E. ;
Kiehl, J. T. .
APPLIED PHYSICS LETTERS, 2007, 91 (02)
[8]   Modeling High-Efficiency Quantum Dot Sensitized Solar Cells [J].
Gonzalez-Pedro, Victoria ;
Xu, Xueqing ;
Mora-Sero, Ivan ;
Bisquert, Juan .
ACS NANO, 2010, 4 (10) :5783-5790
[9]   Photoelectrochemical cells [J].
Grätzel, M .
NATURE, 2001, 414 (6861) :338-344
[10]   Conjugated polymer-based organic solar cells [J].
Guenes, Serap ;
Neugebauer, Helmut ;
Sariciftci, Niyazi Serdar .
CHEMICAL REVIEWS, 2007, 107 (04) :1324-1338