A Scalable Similarity-Popularity Link Prediction Method

被引:24
作者
Kerrache, Said [1 ]
Alharbi, Ruwayda [1 ]
Benhidour, Hafida [1 ]
机构
[1] King Saud Univ, Coll Comp & Informat Sci, Riyadh 11543, Saudi Arabia
关键词
COMMUNITY STRUCTURE; NETWORK; ORGANIZATION; DYNAMICS;
D O I
10.1038/s41598-020-62636-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Link prediction is the task of computing the likelihood that a link exists between two given nodes in a network. With countless applications in different areas of science and engineering, link prediction has received the attention of many researchers working in various disciplines. Considerable research efforts have been invested into the development of increasingly accurate prediction methods. Most of the proposed algorithms, however, have limited use in practice because of their high computational requirements. The aim of this work is to develop a scalable link prediction algorithm that offers a higher overall predictive power than existing methods. The proposed solution falls into the class of global, parameter-free similarity-popularity-based methods, and in it, we assume that network topology is governed by three factors: popularity of the nodes, their similarity and the attraction induced by local neighbourhood. In our approach, popularity and neighbourhood-caused attraction are computed directly from the network topology and factored out by introducing a specific weight map, which is then used to estimate the dissimilarity between non-adjacent nodes through shortest path distances. We show through extensive experimental testing that the proposed method produces highly accurate predictions at a fraction of the computational cost required by existing global methods and at a low additional cost compared to local methods. The scalability of the proposed algorithm is demonstrated on several large networks having hundreds of thousands of nodes.
引用
收藏
页数:14
相关论文
共 54 条
[11]   Sustaining the Internet with hyperbolic mapping [J].
Boguna, Marian ;
Papadopoulos, Fragkiskos ;
Krioukov, Dmitri .
NATURE COMMUNICATIONS, 2010, 1
[12]   Navigability of complex networks [J].
Boguna, Marian ;
Krioukov, Dmitri ;
Claffy, K. C. .
NATURE PHYSICS, 2009, 5 (01) :74-80
[13]  
BRENNER S, 1974, GENETICS, V77, P71
[14]   Topological structure analysis of the protein-protein interaction network in budding yeast [J].
Bu, DB ;
Zhao, Y ;
Cai, L ;
Xue, H ;
Zhu, XP ;
Lu, HC ;
Zhang, JF ;
Sun, SW ;
Ling, LJ ;
Zhang, N ;
Li, GJ ;
Chen, RS .
NUCLEIC ACIDS RESEARCH, 2003, 31 (09) :2443-2450
[15]   From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks [J].
Cannistraci, Carlo Vittorio ;
Alanis-Lobato, Gregorio ;
Ravasi, Timothy .
SCIENTIFIC REPORTS, 2013, 3
[16]  
Chen WF, 2015, CERAMIC MATERIALS FOR ENERGY APPLICATIONS IV, P51
[17]   Hierarchical structure and the prediction of missing links in networks [J].
Clauset, Aaron ;
Moore, Cristopher ;
Newman, M. E. J. .
NATURE, 2008, 453 (7191) :98-101
[18]  
Coleman J.S., 1964, INTRO MATH SOCIOLOGY
[19]   Common neighbours and the local-community-paradigm for topological link prediction in bipartite networks [J].
Daminelli, Simone ;
Thomas, Josephine Maria ;
Duran, Claudio ;
Cannistraci, Carlo Vittorio .
NEW JOURNAL OF PHYSICS, 2015, 17
[20]  
Davis J, 2006, P 23 INT C MACH LEAR, P233, DOI DOI 10.1145/1143844.1143874