Enhancing Noah Land Surface Model Prediction Skill over Indian Subcontinent by Assimilating SMOPS Blended Soil Moisture

被引:27
作者
Nair, Akhilesh S. [1 ]
Indu, J. [1 ]
机构
[1] Indian Inst Technol, Dept Civil Engn, Mumbai 400076, Maharashtra, India
关键词
data assimilation; Land Surface Model (LSM); Radiative Transfer Model; Ensemble Kalman Filter; microwave brightness temperature; SMOPS; REMOTELY-SENSED SURFACE; AMSR-E; TRIPLE COLLOCATION; TIBETAN PLATEAU; MICROWAVE EMISSION; INFORMATION-SYSTEM; VALIDATION; CALIBRATION; NETWORK; SIMULATIONS;
D O I
10.3390/rs8120976
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the present study, soil moisture assimilation is conducted over the Indian subcontinent, using the Noah Land Surface Model (LSM) and the Soil Moisture Operational Products System (SMOPS) observations by utilizing the Ensemble Kalman Filter. The study is conducted in two stages involving assimilation of soil moisture and simulation of brightness temperature (Tb) using radiative transfer scheme. The results of data assimilation in the form of simulated Surface Soil Moisture (SSM) maps are evaluated for the Indian summer monsoonal months of June, July, August, September (JJAS) using the Land Parameter Retrieval Model (LPRM) AMSR-E soil moisture as reference. Results of comparative analysis using the Global land Data Assimilation System (GLDAS) SSM is also discussed over India. Data assimilation using SMOPS soil moisture shows improved prediction over the Indian subcontinent, with an average correlation of 0.96 and average root mean square difference (RMSD) of 0.0303 m(3)/m(3). The results are promising in comparison with the GLDAS SSM, which has an average correlation of 0.93 and average RMSD of 0.0481 m(3)/m(3). In the second stage of the study, the assimilated soil moisture is used to simulate X-band brightness temperature (Tb) at an incidence angle of 55 degrees using the Community Microwave Emission Model (CMEM) Radiative transfer Model (RTM). This is aimed to study the sensitivity of the parameterization scheme on Tb simulation over the Indian subcontinent. The result of Tb simulation shows that the CMEM parameterization scheme strongly influences the simulated top of atmosphere (TOA) brightness temperature. Furthermore, the Tb simulations from Wang dielectric model and Kirdyashev vegetation model shows better similarity with the actual AMSR-E Tb over the study region.
引用
收藏
页数:24
相关论文
共 71 条
[1]   Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data Assimilation System estimates [J].
Al-Yaari, A. ;
Wigneron, J. -P. ;
Ducharne, A. ;
Kerr, Y. ;
de Rosnay, P. ;
de Jeu, R. ;
Govind, A. ;
Al Bitar, A. ;
Albergel, C. ;
Munoz-Sabater, J. ;
Richaume, P. ;
Mialon, A. .
REMOTE SENSING OF ENVIRONMENT, 2014, 149 :181-195
[2]   Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France [J].
Albergel, C. ;
Calvet, J. -C. ;
de Rosnay, P. ;
Balsamo, G. ;
Wagner, W. ;
Hasenauer, S. ;
Naeimi, V. ;
Martin, E. ;
Bazile, E. ;
Bouyssel, F. ;
Mahfouf, J. -F. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2010, 14 (11) :2177-2191
[3]  
Bennett A.F., 1992, INVERSE METHODS PHYS
[4]   Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau [J].
Bi, Haiyun ;
Ma, Jianwen ;
Zheng, Wenjun ;
Zeng, Jiangyuan .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (06) :2658-2678
[5]   Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe [J].
Brocca, L. ;
Hasenauer, S. ;
Lacava, T. ;
Melone, F. ;
Moramarco, T. ;
Wagner, W. ;
Dorigo, W. ;
Matgen, P. ;
Martinez-Fernandez, J. ;
Llorens, P. ;
Latron, J. ;
Martin, C. ;
Bittelli, M. .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (12) :3390-3408
[6]   Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth [J].
Che, Tao ;
Li, Xin ;
Jin, Rui ;
Huang, Chunlin .
REMOTE SENSING OF ENVIRONMENT, 2014, 143 :54-63
[7]  
Chempeaux J. L, 2005, METEOROL APPL, DOI [10.1017/S1350482705001519, DOI 10.1017/S1350482705001519]
[8]   Modeling of land surface evaporation by four schemes and comparison with FIFE observations [J].
Chen, F ;
Mitchell, K ;
Schaake, J ;
Xue, YK ;
Pan, HL ;
Koren, V ;
Duan, QY ;
Ek, M ;
Betts, A .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D3) :7251-7268
[9]   Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau [J].
Chen, Yingying ;
Yang, Kun ;
Qin, Jun ;
Zhao, Long ;
Tang, Wenjun ;
Han, Menglei .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (10) :4466-4475
[10]   An assessment of remotely sensed surface and root zone soil moisture through active and passive sensors in northeast Asia [J].
Cho, Eunsang ;
Choi, Minha ;
Wagner, Wolfgang .
REMOTE SENSING OF ENVIRONMENT, 2015, 160 :166-179