Role of photoexcited electrons in hydrogen evolution from platinum co-catalysts loaded on anatase TiO2: a first-principles study

被引:21
作者
Boonchun, Adisak [1 ]
Umezawa, Naoto [1 ,2 ,3 ]
Ohno, Takahisa [4 ]
Ouyang, Shuxin [1 ]
Ye, Jinhua [1 ,3 ,5 ]
机构
[1] Natl Inst Mat Sci, Environm Remediat Mat Unit, Tsukuba, Ibaraki 3050044, Japan
[2] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
[3] Tianjin Univ, TU NIMS Joint Res Ctr, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China
[4] Natl Inst Mat Sci, Global Res Ctr Environm & Energy Based Nanomat Sc, Tsukuba, Ibaraki 3050047, Japan
[5] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton WPI MANA, Tsukuba, Ibaraki 3050047, Japan
基金
日本科学技术振兴机构;
关键词
METAL NANOPARTICLES; WATER; ADSORPTION; SURFACE; CO; PHOTOCATALYSIS; DISSOCIATION;
D O I
10.1039/c3ta10249a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mechanism of photocatalytic reactions that occur at platinum co-catalysts loaded on TiO2 is not well understood at the atomic scale. The photoexcited electrons that are generated in TiO2 should play an important role in the evolution of hydrogen by water splitting on a platinum surface. Our density-functional calculations reveal that electrons introduced in the conduction band of TiO2 contribute to an upward shift of the Fermi level of platinum via accumulation at the Pt/TiO2 interface, which results inweakened adsorption of H-2 molecules on the Pt surface. We study how the electronic structure of the Pt/TiO2 interface is modified by photoexcited electrons which are represented by extra electrons introduced into the conduction band by substituting fluorine for oxygen. One important consequence of doping is that bonding-antibonding splitting associated with the hybridization of H-2-sigma and Pt-d states is narrowed, which weakens the H-2-Pt binding and enhances the evolution of H-2.
引用
收藏
页码:6664 / 6669
页数:6
相关论文
共 35 条
[1]  
Bader R. F. W., 1994, ATOMS MOL QUANTUM TH
[2]   PHOTOASSISTED HYDROGEN-PRODUCTION FROM A WATER-ETHANOL SOLUTION - A COMPARISON OF ACTIVITIES OF AU-TIO2 AND PT-TIO2 [J].
BAMWENDA, GR ;
TSUBOTA, S ;
NAKAMURA, T ;
HARUTA, M .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 1995, 89 (02) :177-189
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Structure, electronic, and optical properties of TiO2 atomic clusters: An ab initio study [J].
Chiodo, Letizia ;
Salazar, Martin ;
Romero, Aldo H. ;
Laricchia, Savio ;
Della Sala, Fabio ;
Rubio, Angel .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (24)
[5]   A molecular view of heterogeneous catalysis [J].
Christensen, Claus Hviid ;
Norskov, Jens K. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (18)
[6]   Reduced and n-Type Doped TiO2: Nature of Ti3+ Species [J].
Di Valentin, Cristiana ;
Pacchioni, Gianfranco ;
Selloni, Annabella .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (48) :20543-20552
[7]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[8]   TiO2 photocatalysis and related surface phenomena [J].
Fujishima, Akira ;
Zhang, Xintong ;
Tryk, Donald A. .
SURFACE SCIENCE REPORTS, 2008, 63 (12) :515-582
[9]   Design of Narrow-Gap TiO2: A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity [J].
Gai, Yanqin ;
Li, Jingbo ;
Li, Shu-Shen ;
Xia, Jian-Bai ;
Wei, Su-Huai .
PHYSICAL REVIEW LETTERS, 2009, 102 (03)
[10]   Photoelectrochemical cells [J].
Grätzel, M .
NATURE, 2001, 414 (6861) :338-344