Spin hydrodynamics in the S=1/2 anisotropic Heisenberg chain

被引:24
作者
Herbrych, J. [1 ]
Steinigeweg, R. [1 ]
Prelovsek, P. [1 ,2 ]
机构
[1] J Stefan Inst, SI-1000 Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, Slovenia
关键词
TRANSPORT; DYNAMICS;
D O I
10.1103/PhysRevB.86.115106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the finite-temperature dynamical spin susceptibility of the one-dimensional (generalized) anisotropic Heisenberg model within the hydrodynamic regime of small wave vectors and frequencies. Numerical results are analyzed using the memory-function formalism with the central quantity being the spin-current decay rate gamma (q, omega). It is shown that in a generic nonintegrable model the decay rate is finite in the hydrodynamic limit, consistent with normal spin-diffusion modes. On the other hand, in the gapless integrable model within the XY regime of anisotropy Delta < 1 the behavior is anomalous with vanishing gamma (q, omega = 0) alpha |q|, in agreement with dissipationless uniform transport. Furthermore, in the integrable system the finite-temperature q = 0 dynamical conductivity sigma(q = 0, omega) reveals besides the dissipationless component a regular part with vanishing sigma(reg)(q = 0, omega -> 0) -> 0.
引用
收藏
页数:9
相关论文
共 34 条
[1]  
Breuer H.P., 2007, THEORY OPEN QUANTUM, DOI DOI 10.1093/ACPROF:OSO/9780199213900.001.0001
[2]   INTEGRABILITY AND IDEAL CONDUCTANCE AT FINITE TEMPERATURES [J].
CASTELLA, H ;
ZOTOS, X ;
PRELOVSEK, P .
PHYSICAL REVIEW LETTERS, 1995, 74 (06) :972-975
[3]  
Forster D., 1995, HLTH PROMOTION ALL, P95
[4]   Hydrodynamic limit for the spin dynamics of the Heisenberg chain from quantum Monte Carlo calculations [J].
Grossjohann, Simon ;
Brenig, Wolfram .
PHYSICAL REVIEW B, 2010, 81 (01)
[5]   Transport in quasi one-dimensional spin-1/2 systems [J].
Heidrich-Meisner, F. ;
Honecker, A. ;
Brenig, W. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 151 (1) :135-145
[6]   Finite-temperature Drude weight within the anisotropic Heisenberg chain [J].
Herbrych, J. ;
Prelovsek, P. ;
Zotos, X. .
PHYSICAL REVIEW B, 2011, 84 (15)
[7]   Heat conduction in low-dimensional quantum magnets [J].
Hess, C. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 151 (1) :73-83
[8]   LANCZOS METHOD FOR THE CALCULATION OF FINITE-TEMPERATURE QUANTITIES IN CORRELATED SYSTEMS [J].
JAKLIC, J ;
PRELOVSEK, P .
PHYSICAL REVIEW B, 1994, 49 (07) :5065-5068
[9]   Finite-temperature dynamical structure factor of the Heisenberg-Ising chain [J].
James, A. J. A. ;
Goetze, W. D. ;
Essler, F. H. L. .
PHYSICAL REVIEW B, 2009, 79 (21)
[10]   Lower bounds for the conductivities of correlated quantum systems [J].
Jung, Peter ;
Rosch, Achim .
PHYSICAL REVIEW B, 2007, 75 (24)