A Boundary Integral Equation with the Generalized Neumann Kernel for a Certain Class of Mixed Boundary Value Problem

被引:8
|
作者
Nasser, Mohamed M. S. [1 ,2 ]
Murid, Ali H. M. [3 ,4 ]
Al-Hatemi, Samer A. A. [3 ]
机构
[1] King Khalid Univ, Fac Sci, Dept Math, Abha, Saudi Arabia
[2] Ibb Univ, Fac Sci, Dept Math, Ibb, Yemen
[3] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Utm Johor Bahru 81310, Johor, Malaysia
[4] Univ Teknol Malaysia, Ibnu Sina Inst Fundamental Sci Studies, Utm Johor Bahru 81310, Johor, Malaysia
关键词
MULTIPLY-CONNECTED REGIONS; RIEMANN-HILBERT PROBLEM; PLANE POTENTIAL PROBLEMS; LAPLACES-EQUATION; FAST SOLVER; DOMAINS; MODE; MAP;
D O I
10.1155/2012/254123
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a uniquely solvable boundary integral equation with the generalized Neumann kernel for solving two-dimensional Laplace's equation on multiply connected regions with mixed boundary condition. Two numerical examples are presented to verify the accuracy of the proposed method.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A boundary integral equation with the generalized Neumann kernel for a mixed boundary value problem in unbounded multiply connected regions
    Samer AA Al-Hatemi
    Ali HM Murid
    Mohamed MS Nasser
    Boundary Value Problems, 2013
  • [2] A boundary integral equation with the generalized Neumann kernel for a mixed boundary value problem in unbounded multiply connected regions
    Al-Hatemi, Samer A. A.
    Murid, Ali H. M.
    Nasser, Mohamed M. S.
    BOUNDARY VALUE PROBLEMS, 2013, : 1 - 17
  • [3] Boundary Integral Equations with the Generalized Neumann Kernel for the Neumann Problem
    Nasser, Mohamed M. S.
    MATEMATIKA, 2007, 23 (02) : 83 - 98
  • [4] Solving a Mixed Boundary Value Problem via an Integral Equation with Generalized Neumann Kernel on Unbounded Multiply Connected Region
    Alhatemi, S. A. A.
    Murid, A. H. M.
    Nasser, M. M. S.
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2012, 8 (04): : 193 - 197
  • [5] Solving a Mixed Boundary Value Problem via an Integral Equation with Adjoint Generalized Neumann Kernel in Bounded Multiply Connected Regions
    Al-Hatemi, Samer A. A.
    Murid, Ali H. M.
    Nasser, Mohamed M. S.
    PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 508 - 517
  • [6] NUMERICAL CONFORMAL MAPPING VIA A BOUNDARY INTEGRAL EQUATION WITH THE GENERALIZED NEUMANN KERNEL
    Nasser, Mohamed M. S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (03): : 1695 - 1715
  • [7] Vragov Boundary Value Problem with Integral Boundary Condition for a Mixed Type Equation
    Egorov, Ivan E.
    PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'19), 2019, 2172
  • [8] A Neumann boundary value problem for a generalized Ginzburg-Landau equation
    Gao, HJ
    Gu, XH
    Bu, C
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 134 (2-3) : 553 - 560
  • [9] NUMERICAL CONFORMAL MAPPING VIA A BOUNDARY INTEGRAL EQUATION WITH THE ADJOINT GENERALIZED NEUMANN KERNEL
    Nasser, Mohamed M. S.
    Murid, Ali H. M.
    Sangawi, Ali W. K.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, 5 (01): : 96 - 117
  • [10] Boundary integral equations with the generalized neumann kernel for robin problem in simply connected region
    Hamzah, A.S.A. (amirsyafiq89@ymail.com), 1600, CESER Publications, Post Box No. 113, Roorkee, 247667, India (44):