Compact Double-Sided Decoupled Coils-Based WPT Systems for High-Power Applications: Analysis, Design, and Experimental Verification

被引:94
作者
Li, Yong [1 ]
Lin, Tianren [1 ]
Mai, Ruikun [1 ]
Huang, Limin [2 ,3 ]
He, Zhengyou [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Elect Engn, Chengdu 610031, Sichuan, Peoples R China
[2] Univ Grenoble Alpes, Grenoble Elect Engn Lab, F-38000 Grenoble, France
[3] CNRS, F-38000 Grenoble, France
基金
中国国家自然科学基金;
关键词
Compact; wireless charging; wireless power transfer (WPT); CHARGER; EVS;
D O I
10.1109/TTE.2017.2745681
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Wireless power transfer (WPT) system is a practical and promising way for charging electric vehicles due to its security, convenience, and reliability. The requirement for high-power wireless charging is on the rise, but implementing such a WPT system has been a challenge because of the constraints of the power semiconductors and the installation space limitation at the bottom of the vehicle. In this paper, bipolar coils and unipolar coils are integrated into the transmitting side and the receiving side to make the magnetic coupler more compact while delivering high power. The same-side coils are naturally decoupled; therefore, there is no magnetic coupling between the same-side coils. The circuit model of the proposed WPT system using double-sided LCC compensations is presented. Finite-element analysis tool ANSYS MAXWELL is adopted to simulate and design the magnetic coupler. Finally, an experimental setup is constructed to evaluate the proposed WPT system. The proposed WPT system achieved the dc-dc efficiency at 94.07% while delivering 4.73 kW to the load with a vertical air gap of 150 mm.
引用
收藏
页码:64 / 75
页数:12
相关论文
共 31 条
[1]   Effect of Coupling Between Multiple Transmitters or Multiple Receivers on Wireless Power Transfer [J].
Ahn, Dukju ;
Hong, Songcheol .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (07) :2602-2613
[2]   Asymmetric Coil Sets for Wireless Stationary EV Chargers With Large Lateral Tolerance by Dominant Field Analysis [J].
Choi, Su Y. ;
Huh, Jin ;
Lee, Woo Y. ;
Rim, Chun T. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2014, 29 (12) :6406-6420
[3]   Compact and Efficient Bipolar Coupler for Wireless Power Chargers: Design and Analysis [J].
Deng, Junjun ;
Li, Weihan ;
Trong Duy Nguyen ;
Li, Siqi ;
Mi, Chunting Chris .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2015, 30 (11) :6130-6140
[4]   Multiphase Pickups for Large Lateral Tolerance Contactless Power-Transfer Systems [J].
Elliott, Grant A. J. ;
Raabe, Stefan ;
Covic, Grant A. ;
Boys, John T. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (05) :1590-1598
[5]   A Parallel Topology for Inductive Power Transfer Power Supplies [J].
Hao, Hao ;
Covic, Grant A. ;
Boys, John T. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2014, 29 (03) :1140-1151
[6]   Optimization of a Contactless Power Transfer System for Electric Vehicles [J].
Hasanzadeh, Saeed ;
Vaez-Zadeh, Sadegh ;
Isfahani, Arash Hassanpour .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2012, 61 (08) :3566-3573
[7]   Narrow-Width Inductive Power Transfer System for Online Electrical Vehicles [J].
Huh, J. ;
Lee, S. W. ;
Lee, W. Y. ;
Cho, G. H. ;
Rim, C. T. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2011, 26 (12) :3666-3679
[8]   A New Integration Method for an Electric Vehicle Wireless Charging System Using LCC Compensation Topology: Analysis and Design [J].
Kan, Tianze ;
Nguyen, Trong-Duy ;
White, Jeff C. ;
Malhan, Rajesh K. ;
Mi, Chunting Chris .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2017, 32 (02) :1638-1650
[9]   Development of 1-MW Inductive Power Transfer System for a High-Speed Train [J].
Kim, Jae Hee ;
Lee, Byung-Song ;
Lee, Jun-Ho ;
Lee, Seung-Hwan ;
Park, Chan-Bae ;
Jung, Shin-Myung ;
Lee, Soo-Gil ;
Yi, Kyung-Pyo ;
Baek, Jeihoon .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (10) :6242-6250
[10]   A Double-Sided LCC Compensation Network and Its Tuning Method for Wireless Power Transfer [J].
Li, Siqi ;
Li, Weihan ;
Deng, Junjun ;
Trong Duy Nguyen ;
Mi, Chunting Chris .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2015, 64 (06) :2261-2273