A MULTILEVEL MONTE CARLO ENSEMBLE SCHEME FOR RANDOM PARABOLIC PDEs

被引:28
作者
Luo, Yan [1 ]
Wang, Zhu [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, West Hitech Zone, Chengdu 611731, Sichuan, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
ensemble-based time stepping; multilevel Monte Carlo; random parabolic PDEs; PARTIAL-DIFFERENTIAL-EQUATIONS; ORTHOGONAL DECOMPOSITION METHOD; STOCHASTIC COLLOCATION METHOD; ELLIPTIC PDES; ALGORITHM;
D O I
10.1137/18M1174635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A first-order, Monte Carlo ensemble method has been recently introduced for solving parabolic equations with random coefficients in [Luo and Wang, SIAM T. Nurner. Anal., 56 (2018), pp. 859-876], which is a natural synthesis of the ensemble-based, Monte Carlo sampling algorithm and the ensemble-based, first-order time stepping scheme. With the introduction of an ensemble average of the diffusion function, this algorithm leads to a single discrete system with multiple right-hand sides for a group of realizations, which could be solved more efficiently than a sequence of linear systems. In this paper, we pursue in the same direction and develop a new multilevel Monte Carlo ensemble method for solving random parabolic partial differential equations. Comparing with the approach in [Luo and Wang, SIAM T. Numer. Anal., 56 (2018), pp. 859-876], this method possesses a second-order accuracy in time and further reduces the computational cost by using the multilevel Monte Carlo sampling method. Rigorous numerical analysis shows the method achieves the optimal rate of convergence. Several numerical experiments are presented to illustrate the theoretical results.
引用
收藏
页码:A622 / A642
页数:21
相关论文
共 50 条
  • [41] Multilevel Monte Carlo Approximation of Functions
    Krumscheid, S.
    Nobile, F.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (03): : 1256 - 1293
  • [42] Unbiased Estimators and Multilevel Monte Carlo
    Vihola, Matti
    OPERATIONS RESEARCH, 2018, 66 (02) : 448 - 462
  • [43] Quasi-Monte Carlo and Multilevel Monte Carlo Methods for Computing Posterior Expectations in Elliptic Inverse Problems
    Scheichl, R.
    Stuart, A. M.
    Teckentrup, A. L.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 493 - 518
  • [44] Goal-oriented adaptive finite element multilevel Monte Carlo with convergence rates
    Beck, Joakim
    Liu, Yang
    von Schwerin, Erik
    Tempone, Raul
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 402
  • [45] Multilevel quasi-Monte Carlo for optimization under uncertainty
    Guth, Philipp A.
    Van Barel, Andreas
    NUMERISCHE MATHEMATIK, 2023, 154 (3-4) : 443 - 484
  • [46] SCHEDULING MASSIVELY PARALLEL MULTIGRID FOR MULTILEVEL MONTE CARLO METHODS
    Drzisga, D.
    Gmeiner, B.
    Ruede, U.
    Scheichl, R.
    Wohlmuth, B.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05) : S873 - S897
  • [47] ADAPTIVE MULTILEVEL MONTE CARLO METHODS FOR STOCHASTIC VARIATIONAL INEQUALITIES
    Kornhuber, Ralf
    Youett, Evgenia
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (04) : 1987 - 2007
  • [48] Monte Carlo versus multilevel Monte Carlo in weak error simulations of SPDE approximations
    Lang, Annika
    Petersson, Andreas
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 143 : 99 - 113
  • [49] Multilevel Monte Carlo for exponential Levy models
    Giles, Michael B.
    Xia, Yuan
    FINANCE AND STOCHASTICS, 2017, 21 (04) : 995 - 1026
  • [50] MARKOV CHAIN SIMULATION FOR MULTILEVEL MONTE CARLO
    Jasra, Ajay
    Law, Kody J. H.
    Xu, Yaxian
    FOUNDATIONS OF DATA SCIENCE, 2021, 3 (01): : 27 - 47