A MULTILEVEL MONTE CARLO ENSEMBLE SCHEME FOR RANDOM PARABOLIC PDEs

被引:28
作者
Luo, Yan [1 ]
Wang, Zhu [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, West Hitech Zone, Chengdu 611731, Sichuan, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
ensemble-based time stepping; multilevel Monte Carlo; random parabolic PDEs; PARTIAL-DIFFERENTIAL-EQUATIONS; ORTHOGONAL DECOMPOSITION METHOD; STOCHASTIC COLLOCATION METHOD; ELLIPTIC PDES; ALGORITHM;
D O I
10.1137/18M1174635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A first-order, Monte Carlo ensemble method has been recently introduced for solving parabolic equations with random coefficients in [Luo and Wang, SIAM T. Nurner. Anal., 56 (2018), pp. 859-876], which is a natural synthesis of the ensemble-based, Monte Carlo sampling algorithm and the ensemble-based, first-order time stepping scheme. With the introduction of an ensemble average of the diffusion function, this algorithm leads to a single discrete system with multiple right-hand sides for a group of realizations, which could be solved more efficiently than a sequence of linear systems. In this paper, we pursue in the same direction and develop a new multilevel Monte Carlo ensemble method for solving random parabolic partial differential equations. Comparing with the approach in [Luo and Wang, SIAM T. Numer. Anal., 56 (2018), pp. 859-876], this method possesses a second-order accuracy in time and further reduces the computational cost by using the multilevel Monte Carlo sampling method. Rigorous numerical analysis shows the method achieves the optimal rate of convergence. Several numerical experiments are presented to illustrate the theoretical results.
引用
收藏
页码:A622 / A642
页数:21
相关论文
共 50 条
  • [31] MULTILEVEL MONTE CARLO EM SCHEME FOR MV-SDES WITH SMALL NOISE
    不详
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024, 14 (04): : 748 - 777
  • [32] Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems I: regularity and error analysis
    Gilbert, Alexander D.
    Scheichl, Robert
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (01) : 466 - 503
  • [33] Validated forward integration scheme for parabolic PDEs via Chebyshev series
    Cyranka, Jacek
    Lessard, Jean-Philippe
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 109
  • [34] A Fully Parallelized and Budgeted Multilevel Monte Carlo Method and the Application to Acoustic Waves
    Baumgarten, Niklas
    Krumscheid, Sebastian
    Wieners, Christian
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2024, 12 (03): : 901 - 931
  • [35] Efficient White Noise Sampling and Coupling for Multilevel Monte Carlo with Nonnestea Meshes
    Croci, M.
    Giles, M. B.
    Rognes, M. E.
    Farrell, P. E.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (04): : 1630 - 1655
  • [36] Multilevel Monte Carlo for Reliability Theory
    Aslett, Louis J. M.
    Nagapetyan, Tigran
    Vollmer, Sebastian J.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2017, 165 : 188 - 196
  • [37] On the effective dimension and multilevel Monte Carlo
    Kahale, Nabil
    OPERATIONS RESEARCH LETTERS, 2022, 50 (04) : 415 - 421
  • [38] ADAPTIVE MULTILEVEL MONTE CARLO FOR PROBABILITIES
    Haji-Ali, Abdul-Lateef
    Spence, Jonathan
    Teckentrup, Aretha L.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (04) : 2125 - 2149
  • [39] Multilevel sequential Monte Carlo samplers
    Beskos, Alexandros
    Jasra, Ajay
    Law, Kody
    Tempone, Raul
    Zhou, Yan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (05) : 1417 - 1440
  • [40] A continuation multilevel Monte Carlo algorithm
    Nathan Collier
    Abdul-Lateef Haji-Ali
    Fabio Nobile
    Erik von Schwerin
    Raúl Tempone
    BIT Numerical Mathematics, 2015, 55 : 399 - 432