A MULTILEVEL MONTE CARLO ENSEMBLE SCHEME FOR RANDOM PARABOLIC PDEs

被引:28
|
作者
Luo, Yan [1 ]
Wang, Zhu [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, West Hitech Zone, Chengdu 611731, Sichuan, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
ensemble-based time stepping; multilevel Monte Carlo; random parabolic PDEs; PARTIAL-DIFFERENTIAL-EQUATIONS; ORTHOGONAL DECOMPOSITION METHOD; STOCHASTIC COLLOCATION METHOD; ELLIPTIC PDES; ALGORITHM;
D O I
10.1137/18M1174635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A first-order, Monte Carlo ensemble method has been recently introduced for solving parabolic equations with random coefficients in [Luo and Wang, SIAM T. Nurner. Anal., 56 (2018), pp. 859-876], which is a natural synthesis of the ensemble-based, Monte Carlo sampling algorithm and the ensemble-based, first-order time stepping scheme. With the introduction of an ensemble average of the diffusion function, this algorithm leads to a single discrete system with multiple right-hand sides for a group of realizations, which could be solved more efficiently than a sequence of linear systems. In this paper, we pursue in the same direction and develop a new multilevel Monte Carlo ensemble method for solving random parabolic partial differential equations. Comparing with the approach in [Luo and Wang, SIAM T. Numer. Anal., 56 (2018), pp. 859-876], this method possesses a second-order accuracy in time and further reduces the computational cost by using the multilevel Monte Carlo sampling method. Rigorous numerical analysis shows the method achieves the optimal rate of convergence. Several numerical experiments are presented to illustrate the theoretical results.
引用
收藏
页码:A622 / A642
页数:21
相关论文
共 50 条
  • [21] Improved error estimates of ensemble Monte Carlo methods for random transient heat equations with uncertain inputs
    Yong, Jinjun
    Ye, Changlun
    Luo, Xianbing
    Sun, Shuyu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01)
  • [22] Multilevel Monte Carlo estimators for elliptic PDEs with Levy-type diffusion coefficient
    Merkle, Robin
    Barth, Andrea
    BIT NUMERICAL MATHEMATICS, 2022, 62 (04) : 1279 - 1317
  • [23] Advanced Multilevel Monte Carlo Methods
    Jasra, Ajay
    Law, Kody
    Suciu, Carina
    INTERNATIONAL STATISTICAL REVIEW, 2020, 88 (03) : 548 - 579
  • [24] A continuation multilevel Monte Carlo algorithm
    Collier, Nathan
    Haji-Ali, Abdul-Lateef
    Nobile, Fabio
    von Schwerin, Erik
    Tempone, Raul
    BIT NUMERICAL MATHEMATICS, 2015, 55 (02) : 399 - 432
  • [25] Multilevel Monte Carlo estimators for elliptic PDEs with Lévy-type diffusion coefficient
    Robin Merkle
    Andrea Barth
    BIT Numerical Mathematics, 2022, 62 : 1279 - 1317
  • [26] Application of Quasi-Monte Carlo Methods to Elliptic PDEs with Random Diffusion Coefficients: A Survey of Analysis and Implementation
    Kuo, Frances Y.
    Nuyens, Dirk
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2016, 16 (06) : 1631 - 1696
  • [27] A Multigrid Multilevel Monte Carlo Method for Stokes-Darcy Model with Random Hydraulic Conductivity and Beavers-Joseph Condition
    Yang, Zhipeng
    Ming, Ju
    Qiu, Changxin
    Li, Maojun
    He, Xiaoming
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (02)
  • [28] Analysis of Nested Multilevel Monte Carlo Using Approximate Normal Random Variables
    Giles, Michael
    Sheridan-Methven, Oliver
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (01): : 200 - 226
  • [29] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    Graham, I. G.
    Kuo, F. Y.
    Nichols, J. A.
    Scheichl, R.
    Schwab, Ch.
    Sloan, I. H.
    NUMERISCHE MATHEMATIK, 2015, 131 (02) : 329 - 368
  • [30] MULTILEVEL MONTE CARLO EM SCHEME FOR MV-SDES WITH SMALL NOISE
    Botija-munoz, Ulises
    Yuan, Chenggui
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024,