A MULTILEVEL MONTE CARLO ENSEMBLE SCHEME FOR RANDOM PARABOLIC PDEs

被引:28
|
作者
Luo, Yan [1 ]
Wang, Zhu [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, West Hitech Zone, Chengdu 611731, Sichuan, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
ensemble-based time stepping; multilevel Monte Carlo; random parabolic PDEs; PARTIAL-DIFFERENTIAL-EQUATIONS; ORTHOGONAL DECOMPOSITION METHOD; STOCHASTIC COLLOCATION METHOD; ELLIPTIC PDES; ALGORITHM;
D O I
10.1137/18M1174635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A first-order, Monte Carlo ensemble method has been recently introduced for solving parabolic equations with random coefficients in [Luo and Wang, SIAM T. Nurner. Anal., 56 (2018), pp. 859-876], which is a natural synthesis of the ensemble-based, Monte Carlo sampling algorithm and the ensemble-based, first-order time stepping scheme. With the introduction of an ensemble average of the diffusion function, this algorithm leads to a single discrete system with multiple right-hand sides for a group of realizations, which could be solved more efficiently than a sequence of linear systems. In this paper, we pursue in the same direction and develop a new multilevel Monte Carlo ensemble method for solving random parabolic partial differential equations. Comparing with the approach in [Luo and Wang, SIAM T. Numer. Anal., 56 (2018), pp. 859-876], this method possesses a second-order accuracy in time and further reduces the computational cost by using the multilevel Monte Carlo sampling method. Rigorous numerical analysis shows the method achieves the optimal rate of convergence. Several numerical experiments are presented to illustrate the theoretical results.
引用
收藏
页码:A622 / A642
页数:21
相关论文
共 50 条
  • [1] An ensemble Monte Carlo HDG method for parabolic PDEs with random coefficients
    Li, Meng
    Luo, Xianbing
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (02) : 405 - 421
  • [2] Robust Optimization of PDEs with Random Coefficients Using a Multilevel Monte Carlo Method
    Van Barel, Andreas
    Vandewalle, Stefan
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2019, 7 (01) : 174 - 202
  • [3] A multilevel Monte Carlo ensemble and hybridizable discontinuous Galerkin method for a stochastic parabolic problem
    Li, Meng
    Luo, Xianbing
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (04) : 2840 - 2864
  • [4] Smoothed circulant embedding with applications to multilevel Monte Carlo methods for PDEs with random coefficients
    Istratuca, Anastasia
    Teckentrup, Aretha L.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2025,
  • [5] Multilevel Monte Carlo Analysis for Optimal Control of Elliptic PDEs with Random Coefficients
    Ali, Ahmad Ahmad
    Ullmann, Elisabeth
    Hinze, Michael
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 466 - 492
  • [6] Multilevel Monte Carlo FEM for elliptic PDEs with Besov random tree priors
    Schwab, Christoph
    Stein, Andreas
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2024, 12 (03): : 1574 - 1627
  • [7] MG/OPT AND MULTILEVEL MONTE CARLO FOR ROBUST OPTIMIZATION OF PDEs
    Van Barel, Andreas
    Vandewalle, Stefan
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (03) : 1850 - 1876
  • [8] MULTILEVEL MONTE CARLO METHODS FOR STOCHASTIC ELLIPTIC MULTISCALE PDES
    Abdulle, Assyr
    Barth, Andrea
    Schwab, Christoph
    MULTISCALE MODELING & SIMULATION, 2013, 11 (04) : 1033 - 1070
  • [9] AN ENSEMBLE ALGORITHM FOR NUMERICAL SOLUTIONS TO DETERMINISTIC AND RANDOM PARABOLIC PDEs
    Luo, Yan
    Wang, Zhu
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (02) : 859 - 876
  • [10] EMBEDDED MULTILEVEL MONTE CARLO FOR UNCERTAINTY QUANTIFICATION IN RANDOM DOMAINS
    Badia, Santiago
    Hampton, Jerrad
    Principe, Javier
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2021, 11 (01) : 119 - 142