Quantum mechanics of graphene with a one-dimensional potential

被引:9
作者
Miserev, D. S. [1 ,2 ]
Entin, M. V. [2 ]
机构
[1] Novosibirsk State Univ, Novosibirsk 630090, Russia
[2] Russian Acad Sci, Inst Semicond Phys, Siberian Branch, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Quantum theory;
D O I
10.1134/S1063776112090087
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Electron states in graphene with a one-dimensional potential have been studied. An approximate solution has been obtained for a small angle between vectors of the incident electron momentum and potential gradient. Exactly solvable problems with a potential of the smoothened step type U(x) = Utanh(x/a) and a potential with a singularity U(x) = -U/(|x| + d) are considered. The transmission/reflection coefficients and phases for various potential barriers are determined. A quasi-classical solution is obtained.
引用
收藏
页码:694 / 705
页数:12
相关论文
共 50 条
[21]   Graduate quantum mechanics reform [J].
Carr, L. D. ;
McKagan, S. B. .
AMERICAN JOURNAL OF PHYSICS, 2009, 77 (04) :308-319
[22]   Supersymmetric symplectic quantum mechanics [J].
de Menezes, Miralvo B. ;
Fernandes, M. C. B. ;
Martins, Maria das Gracas R. ;
Santana, A. E. ;
Vianna, J. D. M. .
ANNALS OF PHYSICS, 2018, 389 :111-135
[23]   Dynamical Invariants and Quantization of the One-Dimensional Time-Dependent, Damped, and Driven Harmonic Oscillator [J].
Bertin, M. C. ;
Peleteiro, J. R. B. ;
Pimentel, B. M. ;
Ramirez, J. A. .
BRAZILIAN JOURNAL OF PHYSICS, 2020, 50 (05) :534-540
[24]   Fluctuation expansion in the quantum optimal control of one dimensional perturbed harmonic oscillator [J].
Baykara, N. A. ;
Demiralp, M. .
Advances in Computational Methods in Sciences and Engineering 2005, Vols 4 A & 4 B, 2005, 4A-4B :56-59
[25]   On the Gravitization of Quantum Mechanics 1: Quantum State Reduction [J].
Roger Penrose .
Foundations of Physics, 2014, 44 :557-575
[26]   On the Gravitization of Quantum Mechanics 1: Quantum State Reduction [J].
Penrose, Roger .
FOUNDATIONS OF PHYSICS, 2014, 44 (05) :557-575
[27]   Coherent states in noncommutative quantum mechanics [J].
Ben Geloun, J. ;
Scholtz, F. G. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (04)
[28]   Measurement and indeterminacy in the quantum mechanics of Dirac [J].
Helrich, CS .
ZYGON, 2000, 35 (03) :489-503
[29]   Uncertainty in quantum mechanics: faith or fantasy? [J].
Penrose, Roger .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1956) :4864-4890
[30]   Validity of the adiabatic approximation in quantum mechanics [J].
MacKenzie, R. ;
Morin-Duchesne, A. ;
Paquette, H. ;
Pinel, J. .
PHYSICAL REVIEW A, 2007, 76 (04)