Quantum mechanics of graphene with a one-dimensional potential

被引:9
|
作者
Miserev, D. S. [1 ,2 ]
Entin, M. V. [2 ]
机构
[1] Novosibirsk State Univ, Novosibirsk 630090, Russia
[2] Russian Acad Sci, Inst Semicond Phys, Siberian Branch, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Theoretical Physic; Transverse Momentum; Transmission Coefficient; Discrete Spectrum; High Electron Mobility Transistor;
D O I
10.1134/S1063776112090087
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Electron states in graphene with a one-dimensional potential have been studied. An approximate solution has been obtained for a small angle between vectors of the incident electron momentum and potential gradient. Exactly solvable problems with a potential of the smoothened step type U(x) = Utanh(x/a) and a potential with a singularity U(x) = -U/(|x| + d) are considered. The transmission/reflection coefficients and phases for various potential barriers are determined. A quasi-classical solution is obtained.
引用
收藏
页码:694 / 705
页数:12
相关论文
共 50 条
  • [1] Quantum mechanics of graphene with a one-dimensional potential
    D. S. Miserev
    M. V. Entin
    Journal of Experimental and Theoretical Physics, 2012, 115 : 694 - 705
  • [2] Heat conduction in one-dimensional Fibonacci chain with on-site potential
    Xu Hui
    Cui Mai-Ling
    Ma Song-Shan
    ACTA PHYSICA SINICA, 2010, 59 (10) : 7266 - 7270
  • [3] Quantum fluctuations of one- and two-dimensional spatial dissipative solitons in a nonlinear interferometer: I. One-dimensional dark solitons
    L. A. Nesterov
    N. A. Veretenov
    N. N. Rosanov
    Optics and Spectroscopy, 2015, 118 : 781 - 793
  • [4] Manifestation of Zeno and chaotic-like effects on a one-dimensional multibarrier potential of finite range
    Bar, D
    Horwitz, LP
    PHYSICS LETTERS A, 2002, 296 (06) : 265 - 271
  • [5] Eigenvalues of a One-Dimensional Dirac Operator Pencil
    Elton, Daniel M.
    Levitin, Michael
    Polterovich, Iosif
    ANNALES HENRI POINCARE, 2014, 15 (12): : 2321 - 2377
  • [6] Charge carrier interference in one-dimensional semiconductor rings
    N. T. Bagraev
    A. D. Buravlev
    V. K. Ivanov
    L. E. Klyachkin
    A. M. Malyarenko
    S. A. Rykov
    I. A. Shelykh
    Semiconductors, 2000, 34 : 817 - 824
  • [7] Phase of the transmission coefficient of waves in one-dimensional random media
    Kwang Jin Lee
    Kihong Kim
    Journal of the Korean Physical Society, 2012, 60 : 1028 - 1031
  • [8] On the theory of one-dimensional spin-magnetic scattering of electrons
    R. M. Movsessyan
    A. S. Sahakyan
    M. A. Chalabyan
    Journal of Contemporary Physics (Armenian Academy of Sciences), 2008, 43 : 157 - 160
  • [9] On the Theory of One-Dimensional Spin-Magnetic Scattering of Electrons
    Movsessyan, R. M.
    Sahakyan, A. S.
    Chalabyan, M. A.
    JOURNAL OF CONTEMPORARY PHYSICS-ARMENIAN ACADEMY OF SCIENCES, 2008, 43 (04) : 157 - 160
  • [10] FINITENESS OF THE NEGATIVE SPECTRUM OF THE ONE-DIMENSIONAL MAGNETIC SCHRODINGER OPERATOR
    Eyvazov, Elshad H.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2015, 41 (01): : 104 - 112